
TRISTAN XII Symposium  Original abstract submittal 

An adaptive large neighbourhood search with MILP and heuristic 

repair operators for bus timetabling 

 
Robin Gaborita,*, Evelien van der Hurka, Otto Anker Nielsena, Yu Jianga,b, 

a Department of Technology, Management and Economics, Technical University of Denmark, Denmark 

rpaga@dtu.dk, evdh@dtu.dk, oani@dtu.dk, yujiang@dtu.dk 
b Lancaster University Management School, Lancaster University, United Kingdom 

*Corresponding author 

Extended abstract submitted for presentation at the 12th Triennial Symposium on Transportation Analysis 

conference (TRISTAN XII) June 22-27, 2025, Okinawa, Japan 

 

Keywords: Metaheuristic, Bus timetabling, ALNS, Matheuristic, Operator selection 

 

1     INTRODUCTION 
 

Research goals: This study is motivated to leverage an efficient solution method for Lee et al. 

(2022)’s acyclic bus timetabling problem. The model considers passengers’ entire journey 

experience composed of multiple travel cost components and time-dependent travel times and 

demand. Specifically, we resort to the Adaptive Large Neighbourhood Search (ALNS) method 

(Ropke and Pisinger, 2006) and consider the differences in computation times between operators. 

Lee et al.’s model is very constrained, and defining performant heuristic operators is difficult.  

Thus, a major feature of our proposed ALNS is that it combines a pure heuristic operator and several 

operators repairing solutions with a Mixed Integer Linear Programming (MILP) solver. The latter 

make our ALNS a matheuristic. 

The heuristic repair operator may not be as effective as the MILP repair operators in finding 

improving solutions, but it consumes much less computation time per iteration. The majority of 

studies on ALNS ignore computation time when setting the weights for operator selection. The few 

studies that acknowledge computation times fall into an intuitive pitfall (Adulyasak and Cordeau, 

2014; Gullhav et al., 2017; Laborie and Godard, 2007; Lei, Che and Van Woensel, 2024; Thomas 

and Schaus, 2018). 

Contributions: The main contributions of this study include integrating MILP and heuristic 

repair operators for the ALNS, identifying a common pitfall when setting the weights of operators 

with different computation times, and devising a formula called the inverse-square rule to correct it. 

 

2     SOLUTION METHOD 
 

2.1  ALNS framework 
Due to space limitations, the detail of the algorithm is not given in this abstract. Similar to standard 

ALNS, destroy-repair operator are assigned weights reflecting their performance. At each iteration, 

an operator is selected based on the weights and through a roulette-wheel principle to generate a 

candidate solution. Depending on the quality of the generated solution compared to the best and 

incumbent solutions, the candidate solution is accepted or not, and the weight of the corresponding 

operator is updated. Since our operators require very different computation times, we measure the 

time they consume and propose a formula to adjust the weights based on average computation time 

(section 2.3 ). 

 

2.2  Destroy-repair operators 
We design five destroy-repair operators. Four of them, namely  MILP_4runs, MILP_8runs, 

MILP_2routes8runs, and MILP_halfAllRuns, are denoted as MILP repair operators. To repair the 



  2 

 

TRISTAN XII Symposium  Original abstract submittal 

solution, a restricted MILP problem is formulated by enforcing the non-destroyed decision variables 

to their current values in the complete formulation presented in Lee et al. (2022). This is done by 

adding equality constraints for each to fix their values. Then, a commercial solver is utilised to solve 

the restricted MILP problem with a time limit. The last operator, namely Heur_1run1min, is denoted 

as a heuristic repair operator. First, it repairs the departure time from the first stop by randomly 

adding or subtracting one minute from its value before destruction. Then, a dwell time is drawn for 

each subsequent stop. The MILP repair operators tend to produce higher-quality solutions than 

heuristic repair, but they are much more time-consuming. 

 

2.3  Probability of selecting a destroy-repair operator 
A widely adopted procedure is to use the following equation to compute the probability associated 

with each operator and then apply the roulette wheel selection to select an operator from a set of 

operators.  

 𝑝𝑖 =
𝜔𝑖

∑ 𝜔𝑗𝑗∈Ω
  ∀𝑖 ∈ Ω ,  (1) 

where Ω is the set of operators and 𝜔𝑖 is the weight associated with operator 𝑖. 
To the best of our knowledge, only several ALNS algorithms have explored the idea of considering 

the computation time required by operators in operator selection (Adulyasak and Cordeau, 2014; 

Gullhav et al., 2017; Laborie and Godard, 2007; Lei, Che and Van Woensel, 2024; Thomas and 

Schaus, 2018). Despite the variation in their formula, a common presumption embedded in these 

studies is that the weight is a function of the inverse of the computation time. However, we found 

that presuming the weight is a function of the inverse of the computation time may lead to 

undesirable behaviour of the solution method. Specifically, the computation time allocated in the 

algorithm may not be efficient because too much time would be spent on the slowest operators. The 

full paper will explain why setting weight as a function of the inverse of the computation time can 

lead to an undesirable distribution of computation time between operators and provide an illustrative 

example. 

To address the above-mentioned issue, this study proposes the following formula called the 

inverse-square rule to set the weights of selecting an operator in the ALNS.  

 𝜔𝑖 = 
𝜔𝑖

∆𝑖
2,  ∀𝑖 ∈ Ω     (2) 

where  𝜔𝑖 = (1 − 𝜂)𝜔𝑖 + 𝜂𝜎, ∀𝑖 ∈ Ω, and    (3) 

where 𝜔𝑖  and 𝜔𝑖  are, respectively, the weights associated with operator 𝑖  without and with 

considering computation time. To differentiate these two terms, 𝜔𝑖 is called the revised weight in 

this paper. ∆𝑖 is the average computation time associated with operator i, Ω the set of operators, 𝜎 

the score, and 𝜂 the reaction factor defined by min (𝜂𝑚𝑎𝑥 ∗
1 |Ω|⁄

𝑝𝑖
, 𝜂𝑚𝑎𝑥), where 𝑝𝑖 is the probability 

of selecting operator i. The full paper will give proof that Eq. (2) distributes computation time 

between operators proportionally to the ratio between weight and computation time, overcoming a 

pitfall in the existing literature. 

 

3     NUMERICAL RESULTS 
 

3.1  Case study 
The present study focus on three bus lines of the Copenhaguen bus network. A total of nine instances 

were produced based on the Danish Rejsekort smart card transactions from 2014. The instances 

differ in the optimisation period, the number of passenger groups and their paths. S1, S2, and S3 

denote the small instances, M1, M2, and M3 the medium instances, and L1, L2, and L3 the large 

instances. 



  3 

 

TRISTAN XII Symposium  Original abstract submittal 

 

3.2  Illustration of the proposed operator selection 
Figure 1 illustrates the changes in the operator selection. Our solution method controls the 

distribution of running time between operators. At the beginning of the optimisation process, finding 

improving solutions is relatively easy, including for the heuristic repair operator. Consequently, 

since the heuristic repair operator is much faster than the MILP repair operator, most of the 

computation time is allocated to the MILP repair operator. As time passes, improving the incumbent 

solution becomes more difficult for the heuristic repair operators whereas the MILP repair operators 

are still able to frequently generate improving solutions. Thus, the share of time allocated to the 

MILP repair operators increases. After a while, almost all the computation time is allocated to the 

MILP repair operators. 

 
Figure 1 – Illustration of the changes in operator selection 

3.3  Comparison to Gurobi 
For each instance, we produce ten feasible solutions with our construction heuristic. They are used 

as ten different initial solutions. Then, we run Gurobi and our solution method ten times with a 

computation time of two hours, once for each initial solution.  

After ten runs we obtain the average objective values using ALNS, 𝐴𝐿𝑁𝑆𝑎𝑣𝑔 , and Gurobi, 

𝐺𝑢𝑟𝑜𝑏𝑖𝑎𝑣𝑔, Then, we calculate relative changes in the average objective values of  ALNS compared 

to Gurobi expressed as  𝐺𝑎𝑝 =  
𝐴𝐿𝑁𝑆𝑎𝑣𝑔−𝐺𝑢𝑟𝑜𝑏𝑖𝑎𝑣𝑔

𝐺𝑢𝑟𝑜𝑏𝑖𝑎𝑣𝑔
. A negative 𝐺𝑎𝑝  value represents an 

improvement of ALNS compared with Gurobi. We also obtain the objective value using Gurobi 

without providing an initial feasible solution, denoted 𝐺𝑢𝑟∗, and the relative change between this 

value and 𝐴𝐿𝑁𝑆𝑎𝑣𝑔, expressed as 𝐺𝑎𝑝∗ =  
𝐴𝐿𝑁𝑆𝑎𝑣𝑔−𝐺𝑢𝑟𝑜𝑏𝑖∗

𝐺𝑢𝑟𝑜𝑏𝑖∗ . The results are presented in Table 1.  

Table 1 – Results from Gurobi and our algorithm 

 S1 S2 S3 M1 M2 M3 L1 L2 L3 

𝐺𝑎𝑝 -10.7% -4.3% -4.7% -34.2% -37.9% -32.6% -33.8% -36.4% -33.8% 

𝐺𝑎𝑝∗ -2.9% / -4.7% / / / / / / 

Remark: / indicates that Gurobi without an initial solution, is not able to generate a feasible solution after two hours 

 

Our ALNS solution method outperforms Gurobi (with and without the initial solution) on every 

instance. The average objective value is at least 2.9% better than Gurobi on small instances and 

32.6% better on medium and large instances. 

3.4  Impact of the MILP repair and heuristic repair operators 
We assess the effect of the MILP repair operators by removing them and comparing the results with 

the ones obtained with our base combination of operators (MILP repair and heuristic repair operators 

activated). We perform a similar experiment with the heuristic repair operator. 

The solution method is run ten times for each combination and instance. The average objective value 

𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑𝑎𝑣𝑔  obtained after running each restricted combination is compared to the average 



  4 

 

TRISTAN XII Symposium  Original abstract submittal 

objective value given by the base combination 𝐵𝑎𝑠𝑒𝑎𝑣𝑔 through 𝐺𝑎𝑝 =  
𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑𝑎𝑣𝑔−𝐵𝑎𝑠𝑒𝑎𝑣𝑔

𝐵𝑎𝑠𝑒𝑎𝑣𝑔
. A 

positive value indicates that the solution method performs better when all operators are activated. 

The results are presented in Table 2. 

Table 2 – Comparison of the performance of different operator combinations  

Combination S1 S2 S3 M1 M2 M3 L1 L2 L3 

onlyMILPRepair 1.3% 1.0% 0.9% 2.6% 2.2% 2.7% 4.8% 4.1% 4.6% 

onlyHeuristicRepair 5.7% 5.6% 4.8% 4.7% 5.0% 4.3% 2.0% 2.1% 1.5% 
Remark: The percentage measures the changes in the objective value w.r.t. the base case (all five operators activated). ). 

A positive value means that the performance is worse. The values greater than 2% are bolded. 

 

Removing the heuristic repair operator is detrimental on every instance. The gap is at least 0.9% on 

every instance and 4.1% for the large ones. Removing all four MILP repair operators worsens the 

average results in every instance by at least 1.5%. The gap is at least 4.3% on the small and medium 

instances. 

 

4     DISCUSSION 
 

The results show that our ALNS outperforms Gurobi on every instance. Moreover, combining MILP 

repair operators and a heuristic repair operator is superior to including only one of the two types of 

operators. Ongoing experiments include evaluating the impact of each destroy-repair operator. We 

will also compare our mechanism setting the probability to select operators, namely the inverse-

square rule, to other inverse-power formulas. In particular, we will provide evidence that setting the 

weights inversely proportional to the square of the computation time outperforms setting the weights 

inversely proportional to the computation time. 

 

References 
Adulyasak, Y. and Cordeau, J.F. (2014) ‘Optimization-Based Adaptive Large Neighborhood 

Search for the Production Routing Problem’. doi: https://doi.org/10.1287/trsc.1120.0443. 

Gullhav, A.N. et al. (2017) ‘Adaptive large neighborhood search heuristics for multi-tier service 

deployment problems in clouds’, European Journal of Operational Research, 259(3), pp. 829–

846. doi: https://doi.org/10.1016/j.ejor.2016.11.003. 

Laborie, P. and Godard, D. (2007) ‘Self-Adapting Large Neighborhood Search: Application to 

Single-Mode Scheduling Problems’.  

Lee, K. et al. (2022) ‘Path-oriented synchronized transit scheduling using time-dependent data’, 

Transportation Research Part C: Emerging Technologies, 136, p. 103505. doi: 

https://doi.org/10.1016/J.TRC.2021.103505. 

Lei, J., Che, A. and Van Woensel, T. (2024) ‘Collection-disassembly-delivery problem of 

disassembly centers in a reverse logistics network’, European Journal of Operational Research, 

313(2), pp. 478–493. doi: https://doi.org/10.1016/j.ejor.2023.07.008. 

Ropke, S. and Pisinger, D. (2006) ‘An Adaptive Large Neighborhood Search Heuristic for the 

Pickup and Delivery Problem with Time Windows’, Transportation Science, 40(4), pp. 455–472. 

doi: https://doi.org/10.1287/trsc.1050.0135 

Thomas, C. and Schaus, P. (2018) ‘Revisiting the Self-adaptive Large Neighborhood Search’, in 

W.-J. van Hoeve (ed.) Integration of Constraint Programming, Artificial Intelligence, and 

Operations Research. Cham: Springer International Publishing (Lecture Notes in Computer 

Science), pp. 557–566. doi: https://doi.org/10.1007/978-3-319-93031-2_40. 

https://doi.org/10.1287/trsc.1120.0443
https://doi.org/10.1016/j.ejor.2016.11.003
https://doi.org/10.1016/J.TRC.2021.103505
https://doi.org/10.1016/j.ejor.2023.07.008
https://doi.org/10.1007/978-3-319-93031-2_40

