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1 Introduction

Railways are a backbone infrastructure for passenger and freight transport. Disruptions, how-
ever, happen frequently because of unexpected events. They can impact economies and supply
chains and, ultimately, cause a loss of money and reputation to railway companies. In case of a
disruption, rescheduling is applied to determine a new feasible plan according to the following
steps: first, the timetable is updated, then the rolling stock and, finally, the crew are resched-
uled (Cacchiani et al., 2014). In this work, we focus on the Rolling Stock Rescheduling Problem
(RSRP) that consists of assigning compatible railway vehicles (rolling stocks) to trips according
to an updated timetable, with the main goal of minimizing trip cancellations.

For passenger transportation, RSRP was studied by Nielsen et al. (2012) who presented
a multi-commodity flow model based on a graph defining unit composition changes. Later,
several extensions to this model have been proposed, to include deadheading trips and adjusted
demand (Wagenaar et al., 2017) or combining timetable rescheduling and passenger flow with
RSRP (Veelenturf et al., 2017). A multi-commodity flow model on a hypergraph was proposed
by Borndörfer et al. (2017), while a path-based model was proposed by Lusby et al. (2017).
Recently, Wang et al. (2021) proposed a two-stage heuristic algorithm for the integration of
RSRP with timetable rescheduling.

Fewer studies focused on freight transportation. In particular, a path-based model was pro-
posed in Sato & Fukumura (2012) who studied the locomotive rescheduling problem under dis-
ruptions consisting of several delayed trips and a few canceled ones and solved it by a column
generation algorithm. However, situations like the recent floods that affected several countries
in Europe led to significant challenges for rail freight companies, including penalty payments
and lawsuits. Ultimately, the foreseen shift towards low-carbon freight transportation will be
slower if railways are seen as unreliable. Therefore, the design of effective and efficient rolling
stock rescheduling methods that take into account severe disruptions in freight transportation
is needed. We propose a Multi-Neighborhood Search (MNS) for the RSRP, which has not been
previously used in this context and achieves good solution quality in low computation time.

2 Problem Description

We consider a realistic RSRP taking as a baseline the planning problem introduced by Frisch
et al. (2021), that deals with a real-world freight transport case in Austria. In their approach,
compatible locomotives from set L are assigned to trips in set T , which are characterized by
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departure and arrival stations and times. Sequencing rules have to be respected between pairs
of trips that are executed by the same locomotives. Two trips can be in sequence even if their
connecting stations are not the same, thus requiring a deadheading trip. They are computed
on the railway network, which is represented as a graph composed by nodes (stations) and
edges (sections, S). Each locomotive has a starting location and a maximum number of residual
kilometers it can travel before maintenance has to be executed at specific stations. The goal
is to minimize a weighted sum of the cost associated to the number of used locomotives, the
number of deadhead kilometers, and the number of maintenance appointments, with the first
term having a very large weight.

We consider the scenario in which, during operations, a disruption affects a portion of the
railway network, causing trip cancellations and delays as well as unavailability of some dead-
heading trips. Let T̄ ⊂ T be the set of trips that are not cancelled. A disruption is characterized
by a time interval [tds , tde ] and by a subset of sections S̄ ⊂ S that remain available for trips and
deadheads during that time slot. Additionally, only the set L̄ ⊂ L of locomotives used in the
original plan are available.

The RSRP consists of rescheduling trips in the horizon comprised between tds and the end of
the original schedule, considering current locations of locomotives and the driven kilometers. A
solution is an updated feasible schedule with the objective to minimize, in order of importance,
the additionally canceled trips, the missed maintenance appointments, and the deviation from
the original plan (i.e., different assignments of locomotives to trips). Therefore, the original plan
is also an input to the problem.

We generate our instances based on those by Frisch et al. (2021), based on real-world data.
They have a scheduling horizon of one week, use up to 113 locomotives and a number of trips
ranging from 75 to 3178. Our disrupted instances consist of the original instance, a rolling stock
plan, a list of disrupted sections, and a disruption start and end time. The severity of the
disruption (δ) is the ratio |S \ S̄|/|S| of disrupted sections on total sections.

3 Multi-Neighborhood Search

The composition of multiple local search neighborhoods increases the connectivity in the search
space and gives access to a wide range of search trajectories. Used within a stochastic framework,
Multi-Neighborhood Search (MNS) has proven successful on a wide range of challenging combi-
natorial problems (see, e.g. Lü et al., 2023, Rosati & Schaerf, 2024). We propose an MNS for the
RSRP, and hereafter we describe its main components: the solution representation, the search
space, the neighborhoods, the initial solution, and the metaheuristic that guides the search.

We represent a solution (i.e., a rescheduled plan) by two vectors Π and Φ, both with size |T̄ |.
Given a sorting of trips in T̄ by increasing departure time, the value π(i) of Π is the locomotive
ℓ ∈ L̄ assigned to trip i ∈ T̄ , or π(i) = −1 if a trip is canceled. Each entry ϕ(i) of Φ is a binary
value which is set to 1 if locomotive ℓ = π(i) is undergoing maintenance before trip i (i.e., either
at the arrival station of trip i− 1 or at the departure station of trip i).

The core of our method is the composition of three neighborhoods: Change⟨ℓ, i⟩ that assigns
trip i to locomotive ℓ ∈ L̄ ∪ {−1}, Swap⟨i, j⟩ that swaps the locomotives currently assigned to
trips i and j, and MergeLocomotive⟨ℓ1, ℓ2⟩ that assigns all trips currently assigned to locomotive
ℓ1 to a new locomotive ℓ2 ∈ L̄∪{−1}. After every move, a fast-forward greedy procedure verifies
if maintenance appointments can be executed as in the plan. This procedure allows to keep the
size of the search space manageable and the search efficient. The search space, therefore, is the
set of all possible assignments of values from L̄ ∪ {−1} to members of vector Π, which includes
both the feasible and the infeasible region.

The exploration criterion is stochastic: neighborhoods Change, Swap, and MergeLocomotive
have probabilities σC, σS, and σM, respectively, such that σC + σS + σM = 1. Neighborhoods
Change and MergeLocomotive also have internal biases, called bC and bM , respectively. They de-
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fine the ratio of trips cancellations (ℓ = −1). The move choice is performed with a two-step biased
random move selection. First, a neighborhood is chosen, randomly depending on the probabil-
ities σC, σS, and σM. If the chosen neighborhood is Change or MergeLocomotive, a cancellation
will be performed with probabilities bC ∈ [0, 1] or bM ∈ [0, 1], otherwise a reassignment to any
locomotive ℓ ∈ L̄ will be executed. Finally, a move is uniformly drawn inside the neighborhood.

As initial solution we take the original plan, restricted to T̄ , which might be infeasible. To
ensure a feasible solution, we apply a repair procedure that iteratively cancels the trips that are
infeasible w.r.t. sequencing rules and maintenance appointments.

A Simulated Annealing (SA) metaheuristic guides the search, as it is suited to the stochastic
exploration criterion of our MNS. We use a classic SA with a cut-off mechanism, used to speed
up the early stages of the search (see Rosati & Schaerf, 2024). The parameters of our SA are:
initial temperature T0, final temperature Tf , cooling rate ρ, and the cut-off rate α.

In addition to the MNS, we re-implemented the mathematical model from Frisch et al. (2021),
suitably adapted to take into account the specific constraints and objectives of the RSRP, and
use it for a computational comparison.

4 Experimental Results

Our MNS is written in C++, compiled with g++ 11.4.0 in -O3 mode on Ubuntu 22.04.4. The
mathematical models are written for CPLEX using the C++ Concert interface. We run all the
experiments on a machine equipped with 13th Gen Intel(R) Core(TM) i7-1355U CPU.

We generated a wide set of instances with different disruption durations and severities.
Among them, we selected a subset of 20 instances for validation, leaving the remaining for train-
ing. Table 1 resumes their features: number of trips |T̄ |, number of locomotives |L̄|, disruption
severity δ and duration ∆td. The weights for the cost components of cancellations (c), missed
maintenance appointments (m), and deviations from plan (d), are 100, 10 and 1, respectively.
These weights set clearly the relative relevance of the terms in the objective function.

For the tuning of the parameters we employed the irace tool, with a single tuning stage
for both the SA and the MNS parameters on 10000 repetitions on 464 training instances. The
resulting values for the SA parameters are T0 = 1120.5, Tf = 10.162, α = 0.993, and ρ = 0.268.
The neighborhood probabilities are: σC = 0.816, σS = 0.143, and σM = 0.041, and their biases
bC = 0.494 and bM = 0.257.

In Table 1 we report the results of the mathematical model and the MNS. The model is solved
with a time limit of 3600 seconds on 4 threads, while the MNS runs with time limits of 30 and 120
seconds, on a single thread. For the MNS, we report the average on 10 repetitions per instance.
In both cases, a procedure to recompute the deadheads during the disruption is run beforehand.
It takes on average 52 seconds and is not counted in the table. The model solves four instances
to optimality (# 01, 04, 05, 06), in the elapsed time reported in column t(s). For all the other
instances, the time limit is reached, and for # 19 no feasible solution is found. The MNS, on the
other hand, always succeeds in finding a feasible solution for all instances. Solutions on small
instances are similar to the ones of the model, but are obtained in shorter runtimes, while MNS
outperforms the model by far on larger instances. These considerations apply for both the 30s
and 120s time limits, making our method a suitable option for real-world applications.

5 Discussion and future work

We studied the RSRP for a freight transportation problem and proposed an MNS algorithm
which always found feasible solutions for the considered instances in short computing time. In
the future, we plan to consider additional aspects relevant for locomotive rescheduling (e.g.,
rescheduling maintenance appointments in a flexible way, using reserve locomotives). Regarding
the solution method, we plan to include additional neighborhoods and to speed up the evaluation
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Table 1 – Results for the 20 instances of the validation set.

instance Model MNS 30 s MNS 120 s
# |T̄ | |L̄| δ ∆td (h) t(s) c m d c m d c m d

01 65 7 0.16 10.1 0 0 0 6 0.0 0.0 6.0 0.0 0.0 6.0
02 122 10 0.14 19.2 - 2 0 13 2.0 0.0 11.0 2.0 0.0 11.0
03 57 11 0.10 9.1 - 0 0 9 0.0 0.0 11.4 0.0 0.0 11.4
04 110 11 0.19 10.9 3 2 0 14 2.1 0.0 13.2 2.0 0.0 13.2
05 143 12 0.11 6.7 9 2 0 8 2.0 1.0 2.9 2.0 1.0 2.9
06 210 13 0.11 8.1 283 0 0 12 0.0 0.0 13.7 0.0 0.0 13.7
07 176 15 0.19 7.3 - 3 0 31 4.4 0.0 27.2 4.0 0.0 27.2
08 280 18 0.09 11.2 - 25 1 70 9.1 1.0 28.5 8.3 1.0 28.5
09 314 23 0.17 12.5 - 4 0 27 4.0 0.0 31.6 3.1 0.0 31.6
10 546 28 0.07 19.2 - 4 0 31 1.6 1.5 45.5 0.7 1.5 45.5
11 918 34 0.18 6.3 - 918 3 918 15.3 0.5 190.6 8.3 0.1 146.1
12 1537 40 0.16 6.4 - 1536 30 1536 25.4 4.6 150.1 15.5 4.7 94.5
13 663 43 0.14 8.1 - 317 1 329 15.9 1.0 102.6 11.0 1.0 86.3
14 1283 46 0.15 7.1 - 1282 7 1283 36.9 2.0 182.6 24.4 2.2 109.2
15 1634 47 0.13 9.4 - 1634 2 1634 45.5 0.1 218.8 21.1 0.0 169.3
16 499 50 0.16 11.3 - 340 0 350 15.5 0.0 93.7 11.4 0.0 91.0
17 1853 56 0.06 9.6 - 1853 13 1853 49.4 6.3 230.3 28.4 5.7 205.2
18 2081 58 0.08 36.0 - 2081 4 2081 154.7 1.6 324.7 100.9 1.7 364.2
19 2639 60 0.12 5.7 - - - - 51.5 7.0 125.9 30.7 7.9 190.0
20 1257 61 0.06 16.4 - 1257 0 1257 61.8 0.0 220.1 40.5 0.0 163.0

of differential costs. In addition, we want to solve the planning problem by Frisch et al. (2021),
as MNS can be easily adapted to tackle it. Finally, we plan to generate new instances and to
make them and our results publicly available to foster future research on the RSRP.
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