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1 INTRODUCTION

Most previous RL-based traffic signal controllers primarily adopt a model-free approach, which
does not rely on an underlying traffic model but directly derives control policies from observed
traffic states. The absence of an underlying traffic model within the RL-based control framework
can lead to system instability under demand uncertainties and disruptions that are not well-
trained. Therefore, it is important to incorporate a tractable traffic model with purely data-
driven RL-based algorithms to enhance traffic control systems (Chow et al., 2019). Meanwhile,
to mitigate the increased computational time associated with sophisticated modeling design, it
is necessary to develop a modeling paradigm that can adapt to arbitrary traffic models without
requiring sophisticated calibration and address deviations arising from model-plant mismatch.

This paper presents a modeling paradigm for decentralized adaptive network traffic control
using rollout reinforcement learning (Sutton, 2018). The optimal control problem is formu-
lated to minimize network delays. Unlike model-free RL methods, rollout reinforcement learning
integrates a model-based component that produces short-term traffic state estimates by explic-
itly modeling traffic flows within a predefined planning horizon. To address the computational
complexity in policy evaluation, the model-based simulation is further broken down into a de-
centralized approach, allowing local intersections to simulate asynchronously.

2 DYNAMIC NETWORK TRAFFIC MODEL

The stochastic transition function P is represented by the network traffic model, derives the
traffic state x by considering the control policy µ and the stochastic traffic demand Πt, as
follows:

xk+1 ∼ P (xk,µk|Πt) (1)

where k denotes the decision stage. The traffic state xk can be determined by traffic managers
based on the available data sources. The control policy µk specifies the signal aspects that
regulate traffic flows at each signalized junction for every decision interval k.

In the node model, node n connects a group of entrance links in In with a set of exit links
in Jn. The turning ratio θnij(t) determines the proportion of vehicles flowing from entrance link
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i ∈ In to exit link j ∈ Jn through node n at time t. The traffic flow νij(t) from entrance link i
to exit link j through node n at time t can be determined as follows:

νij(t) = θij(t)ψi(t)µ
n
ij(t) (2)

where ψi(t) denotes the sending flow on link i that is aiming to pass through node n at time t.
The control signal µnij(t) is a binary variable that controls the traffic flow from link i to link j
through node n during time interval t. Correspondingly, the total received flow ϕj(t) of link j
through node n can be derived as:

ϕj(t) =
∑
∀i∈In

νij(t) (3)

We introduce the point queue model and the spatial queue model to illustrate traffic flow
propagation rules between links. The primary difference between these two models is that the
spatial queue model accounts for the physical length of vehicles, whereas the point queue model
does not (Zhang et al., 2013). With the determined outflow ψi(t) of link i, the number of queuing
vehicles can be derived as follows:

λi(t+ 1) = λi(t) + ϕi(t− τi)− ψi(t) (4)

where τi denote the free-flow travel time of link i, the number of queuing vehicles λi(t) is deter-
mined by the inflow ϕi(t − τi) at time t − τi and the outflow ψi(t) at time t in link i. We can
derive the overall network delay at time t calculated by aggregating the delays from all nodes:

σt =
∑
∀n∈N

∑
∀i∈In

λi(t)∆t (5)

3 DECENTRALIZED SIGNAL CONTROL

The optimal control framework aims to derive the optimal signal control policy µ∗
k0

for the entire
network that minimizes overall network delay at each decision stage k0 as follows:

min
µk0

∈A
Z(xk0) = Exk+1∼P (xk,µk|Πt) lim

K→∞


k0+K∑
k=k0

γkσk

 (6)

where xk0 represents the initial condition at k0, and K denotes the control horizon of the MDP.
σk denotes the traffic delay at each stage k. γ denotes the discount factor that facilitates the
convergence of the decision process. We establish an acyclic signal plan by updating the control
policy µk at each stage k based on the traffic state xk. The action space A of the control policy
µ∗
k0

is subject to the all-red time.
The computational effort in seeking the optimal signal µ∗

k0
for stage k0 will grow exponen-

tially as the road network expands. A common approach is to approximate the unknown value
function with a surrogate model Z̃ parameterized by w. However, given the constantly changing
conditions in real traffic, a surrogate model that heavily relies on training with historical data
may struggle to accurately predict future cost-to-go based on real-time traffic states. Hence,
we propose a decentralized signal control via rollout RL-based approach, where explicit traffic
models are incorporated to derive short-term traffic states and costs based on model-based sim-
ulations. We define µk(n) as the local control setting at each node n during stage k. Building
upon the principle of decentralization discussed in Su et al. (2021), the optimal control policy
µ∗k0(n0)

for node n0 can be computed as follows:

µ∗
k0(n0)

=arg min
µk0(n0)

∈An0

Exk+1∼P (xk,µk|πt)k0+K′−1∑
k=k0

γk−k0 σ̂k,n0 +

k0+K′−1∑
k=k0

∑
∀n̸=n0

γk−k0 σ̂k,n + γK
′
Z̃(x̂k0+K′ ,w)

 (7)
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where the first term inside the expectation denotes the minimum traffic delay for the local node
n0 within the planning horizon K ′, evaluated across all potential control policies µk(n0) within
the action space An0 . The second term represents the traffic delays for the remaining nodes
within the network, assumed to be unaffected by µk0(n0) with their control policies fixed. The
surrogate function Z̃ approximates the network delay beyond stage k0 +K ′ based on x̂k0+K′ ,
which ensures that global system costs are considered when evaluating the local control policies
µ∗k0(n). By asynchronously rolling out the model-based component at each node iteratively, the
computational complexity can be reduced significantly compared to that of evaluating the control
policies by simulating the entire road network from a centralized perspective (Chow et al., 2019).
In this study, we use an artificial neural network (ANN) to parameterize the surrogate function
Z̃. A temporal difference (TD) learning method is utilized to specify the set of parameters w
defining the surrogate Z̃ before applying to real-world application (Bertsekas, 2019).

4 NUMERICAL EXPERIMENTS

We assess the efficacy of the designed control paradigm using a grid network with nine nodes.
The external environment is simulated through the SUMO interface. The proposed controllers
that utilize the point queue model and the spatial queue model are denoted as “PQ+ANN"
and “SQ+ANN", respectively. We adopt the standard Deep Q-Network (DQN) method as a
benchmark, which represents a purely data-driven RL-based controller.

We conduct a comparative analysis of traffic performance under scenarios with and without
the data-driven value function approximation as shown in Figure 1. Without the ANN-based
surrogate model, signal plans are determined by evaluating all possible control policies within
the planning horizon K ′, without considering future costs beyond this horizon. As the demand
increases, a noticeable gap in traffic delay emerges between the pure point queue model and the
pure spatial queue model. This can be attributed to the spatial queue model’s consideration
of physical queues and road capacity, which enables it to reflect real-world traffic conditions
under oversaturated conditions more accurately. We further compare the proposed PQ+ANN
and SQ+ANN controllers. We can note that the controllers with the surrogate function out-
perform their counterparts under all demand settings. This is because the ANN approximator
acts as a central coordinator, enhancing coordination between neighboring junctions. Moreover,
it is notable that the gap between the point queue model and the spatial queue model is min-
imized by incorporating the ANN approximator. This demonstrates that the proposed rollout
RL controller can effectively mitigate the model-plant mismatch induced by modeling errors and
further validates the efficacy of the proposed modeling paradigm. To further analyze the network

Figure 1 – Comparison of solution methods with and without ANN approximation.

performance of different controllers under oversaturated conditions, we present the ratio of links
with queue spillback for various controllers under 120% of nominal demand, as shown in Figure
2. Compared to the DQN controller, the proposed PQ+ANN and SQ+ANN controllers signifi-

TRISTAN XII Symposium Original abstract submittal



4

Figure 2 – Ratio of links with queue spillback

cantly reduce the occurrence of queue spillbacks, thereby improving network performance. This
suggests that the surrogate function can act as a central coordinator, enhancing coordination
between neighboring junctions and thereby mitigating long queue accumulations. Moreover, the
ratio in the SQ+ANN controller is half of the PQ+ANN controller. This is because the spatial
queue model accounts for vehicle length, allowing the physical queue to provide more reliable
traffic state estimates for the surrogate function. To conclude, the modeling paradigm can effec-
tively reduce queue spillbacks with the support of the model-based rollout component, without
requiring sophisticated model calibrations.

5 DISCUSSION

In this paper, we develop a novel modeling paradigm for RL-based adaptive network traffic con-
trol that integrates a model-based rollout component with a data-driven surrogate function. The
adoption of point queue and spatial queue models allows for explicit representation of network
flow propagations, enabling more reliable estimations of traffic states and system costs through
short-term rollout simulations. The decentralized mechanism introduced in our framework en-
sures efficient optimization of signal plans at individual intersections in an asynchronous manner.

The effectiveness of the proposed control paradigm is validated through experiments on two
urban networks. The results demonstrate that the rollout RL-based framework significantly
reduces network delays and their associated variability compared to a purely data-driven DQN
algorithm. This suggests that the proposed rollout RL approach is robust across different traffic
models without requiring complex model calibration. Specifically, signal coordinations can be
achieved by the acyclic signal plans, which facilitate the traffic flow efficiency and therefore reduce
the possibility for queue spillbacks.
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