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1 INTRODUCTION
In response to the rapidly evolving challenges of urban environments, there is a growing necessity to
enhance traditional Origin-Destination Matrices Estimation (ODME) models with data sources that
provide broader and more comprehensive insights (Cantelmo et al., 2014). Traditional fixed-location
data collection tools, foundational in developing reliable traffic metrics, often fall short of capturing the
complex nature of travel demand (Carrese et al., 2017). Crowdsourced data, which includes mobile phone
data, GPS-based data, and social media analytics, offers valuable avenues for obtaining high-resolution
information that accurately reflects urban travel patterns and, in particular, it provides insights into
the types of activities people engage in throughout the day. Location-based data allows us to assess
activity levels at specific venues, providing an indirect measure of when and where urban activity occurs.
By capturing these activity patterns, we can better characterize temporal and spatial dynamics of travel
demand, recognizing that each trip is inherently associated with performing a specific activity but without
making direct assumptions about its purpose.

Previous research (Castiglione et al., 2024) examined the relationship between travel flexibility and the
type of activities performed at destinations, leveraging data sources such as Floating Car Data (FCD) and
Google Popular Times (GPT). To mitigate potential biases, GPT data is not used in its raw form; rather,
it is aggregated and analyzed to extract shared activity patterns, ensuring a more representative and
generalizable characterization of spatio-temporal flexibility. These studies demonstrated how flexibility
parameters vary across different activities and time periods, providing valuable insights into the nature
of travel demand. Specifically, six demand components C were identified, each characterized by distinct
levels of temporal and spatial flexibility, and represented through a series of sample OD matrices derived
from the aggregation of FCD trips based on their spatio-temporal flexibility. This body of evidence
underscores the critical importance of integrating crowd-sourced data into the framework of established
dynamic ODME models like the Generalised Least Squares (GLS) model (Cascetta et al., 1993), enhancing
their accuracy in modern urban settings.

This paper introduces the Flex-GLS approach, a novel adaptation of the GLS model designed to
incorporate multiple demand components characterized by detailed spatio-temporal flexibility metrics
derived from real-world, crowdsourced data. This approach aims to more accurately depict travel demand
by blending temporal and spatial flexibility measures, thereby more effectively capturing the complex
dynamics of urban travel. The practical implementation of the Flex-GLS model is exemplified through a
case study in the EUR district of Rome, Italy, utilizing an extensive FCD dataset that recorded over 1.5
million trips between September and December 2020.

2 METHODOLOGY
Temporal Flexibility (TF) and Spatial Flexibility (SF) define an individual’s ability to adjust the timing
and locations of their activities, respectively. In this context, the traditional GLS model is extended to
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encompass multiple demand components C, each characterized by its unique spatio-temporal flexibility
distribution σC . Given nt,C sample OD matrices, where each cell represents trips from an origin O to a
destination D within a time interval t for a travel demand component C, derived from the aggregation of
crowd-sourced data based on shared spatio-temporal flexibility, as detailed in Castiglione et al. (2024),
the modified GLS objective function is provided as follows:

d∗ = argmin
d

(∑
t

(∑
l

wl · (vl(d)− v̂l)
2 +

∑
od

∑
C

wC · (dod,C − d̂od,C)
2

))
(1)

Here, vl(d) denotes simulated traffic flows from a certain demand matrix d, against observed traffic
counts v̂l. d∗ represents the estimated matrix that minimises the discrepancy between simulated and
observed flows. Any generic demand matrix d can then be segmented into C components where dod,C
indicates the demand for each OD pair per component, while d̂od,C is the seed matrix for each demand
component obtained from the classified FCD in Castiglione et al. (2024). The weights wl and wC are
assigned based on the inverse of traffic counts and demand component variances, respectively. Incor-
porating multiple demand components, while straightforward conceptually, significantly complicates the
estimation process, especially for large urban networks. The Flex-GLS model, however, addresses this
complexity by using conditional probabilities to treat demand components as one composite OD variable,
ensuring computational efficiency. Demand components are thus defined as:dC,t,od = PC(t, od)× dt,od

PC(t, od) =
dseed
C,t,od∑

C dseed
C,t,od

(2)

where PC(t, od) represents the probability that a trip from origin O to destination D at time t belongs
to demand component C, derived from the seed OD matrices obtained from the classified Floating Car
Data (FCD). The formulation ensures that the proportion of each demand component is consistent with
prior demand structure information. The Flex-GLS model then utilizes a gradient descent algorithm to
estimate the demand for each OD pair and time interval t. After each gradient descent step, the Flex-
GLS refines the individual demand components through a constrained Maximum Likelihood Estimation
(MLE) problem, leveraging prior probabilities PC(t, od) and variances σ2

C based on seed FCD data. The
MLE constraints in the model aim to ensure data consistency, with Temporal and Spatial Flexibility
treated as complementary. Temporal constraints allow adjustments in demand component proportions
within a time interval t, while ensuring overall consistency across a temporal window T . This is critical
for accurately capturing variations in travel behavior, considering narrower time windows for commuters
versus broader windows for other, more flexible activities (e.g. shopping). Similarly, Spatial Flexibility
enables the redistribution of demand from one origin O to various destinations within the same time
interval, maintaining, however, the proportionality in demand components. The spatio-temporal MLE
problem constraints are thus formalized as:{∑

C PC(t) = 1 ∀t ∈ T, ∀od∑
t∈T

∑
d dC,t,od∑

t∈T

∑
d dt,od

≈
∑

t∈T

∑
d dC,t,od∑

t∈T

∑
d dt,od

∀C, ∀t ∈ T, ∀d
(3)

The second equation ensures that the proportion of demand allocated to each component remains
stable across the estimation period. Specifically, the fraction of demand components originating from
the same origin should remain consistent within a given temporal window T . This means that while
individual trips within a component may shift departure times or destinations, the overall proportion of
each demand component at a given origin remains stable. This constraint prevents excessive shifts in
demand allocation during estimation, preserving the relative importance of each demand component over
time and ensuring that temporal and spatial adjustments occur in a controlled and realistic manner.

3 RESULTS
For benchmarking purposes, initial tests of the Flex-GLS model were conducted on a toy network with one
origin and two destinations to evaluate its performance across different scenarios of data reliability. These
preliminary tests explored various alignments and deviations of seed data from real conditions, preparing
for a more robust application. The findings inform strategic choices of modeling approaches, advocating
for the Flex-GLS when detailed component data is available and for standard GLS in scenarios where
data reliability may be compromised. This section presents the results from applying the Flex-GLS model
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to a comprehensive case study of the EUR district in Rome, Italy. The EUR district, encompassing 51
km² with 54 traffic zones (Figure 1[a]), provides a complex real-world environment for testing the model’s
effectiveness. Figure 1[b] shows the road network along with the locations of 8 traffic count detectors,
reflecting the real conditions of data collection and traffic monitoring in the EUR district. Due to their
placement, some detectors capture traffic from the same primary road segments, while other areas remain
less covered. By incorporating crowdsourced flexibility data, the model improves the observability of OD
pairs, particularly in under-monitored regions.

Figure 1 – Case study: (a) Traffic Zones (b) Road Network and Detectors of the Eur district of Rome

The primary data source for this analysis has been a FCD dataset, which includes 1.5 million car
trips recorded between September and December 2020 in the Metropolitan City of Rome. A subset of
180,000 trips with destinations within the study area has been classified into ’Home’, ’Work’, and ’Other’
categories using rule-based, spatial clustering techniques to identify regular trip patterns. Additionally,
activity data was obtained from Google Popular Times for 752 Points of Interest (POI) located within the
study area, collected in December 2020. From this data, six demand components were identified, each with
its respective spatio-temporal flexibility distributions: Home, Work, Services (MA1), Sustenance (MA2),
Shopping (MA3), and Drop-Off/Pick-Up (DO-PU). These components were analysed according to the
procedure detailed in (Castiglione et al., 2024). To assign the demand on the network and simulate traffic
conditions, we utilize the dynamic traffic simulator Dynasmart, which employs a mesoscopic simulation
framework. Both the Flex-GLS and the standard GLS models were tested across 16 time intervals from
08:00 AM to 12:00 PM, with each interval lasting 15 minutes. Each of the six components was evaluated
over specific time windows to reflect varying temporal dynamics: a time window T = 4 time intervals
for ’Home’ and ’Work’; T = 8 time intervals for ’Services’ (MA1) and ’Drop-Off/Pick-Up’ (DO-PU); and
T = 16 time intervals for ’Sustenance’ (MA2) and ’Shopping’ (MA3). The performance of both models
in terms of RMSE is highlighted in two subsequent tables. Table 1 below presents the comparative
results of both the Flex-GLS and standard GLS models from the initial to the last iteration in terms
of RMSE of demand estimation accuracy and link flow reproduction. Following the initial comparison,
Table 2 provides detailed performance results discretized into the six demand components, highlighting
their respective abilities to handle the spatio-temporal flexibility inherent in each category.

Table 1 – RMSE comparisons between Flex-GLS and GLS
models

RMSE GLS Flex-GLS

Detected Counts vs. Simulated Flows (Initial) 84.8 84.8

Detected Counts vs. Simulated Flows (Final) 33.0 25.3

Real vs. Seed Demand 19.1 19.1

Real vs. Estimated Demand 13.2 7.6

Table 2 – Performance comparison
across demand components

RMSE GLS - Real Flex-GLS - Real
Home 4.3 3.5
Work 1.4 0.6
DO-PU 3.6 1.2
MA1 5.8 4.2
MA2 5.1 2.7
MA3 7.2 3.3
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4 Conclusions
This paper presents the Flex-GLS model, an enhancement to the traditional GLS framework for ODME,
demonstrating the significant potential of integrating crowd-sourced data. This study validates the model
in a real-world setting within the EUR district of Rome, Italy, employing crowd-sourced flexibility data ob-
tained from Floating Car Data and Google Popular times in previous research. The Flex-GLS model suc-
cessfully utilizes this data to estimate six distinct demand components — Home, Work, Drop-Off/Pick-Up,
Services (MA1), Sustenance (MA2), and Shopping (MA3), each characterized by unique spatio-temporal
flexibility patterns. The results highlight the model’s capability to outperform traditional GLS models
by leveraging nuanced insights on the demand structure. This approach not only enhances accuracy in
estimating traffic flows but also adapts to the variability inherent in urban travel. Particularly in the
EUR district, where traffic data coverage spans less than 1% of links, the Flex-GLS model demonstrates
robustness in its estimates, even with minimal traffic data. This feature is invaluable for extensive urban
networks where comprehensive data collection poses significant challenges. Moreover, scalability and
integration with other data sources represent further strengths of the Flex-GLS model. The model’s
design allows for parallel processing of the demand components adjustment during the assignment phase,
ensuring that runtime remains efficient even when scaled to larger urban networks. Future developments
could include integrating additional data sources such as mobile phone records or travel diaries to further
enrich the estimation of flexibility and adaptability across various geographic contexts and data scenar-
ios. Furthermore, ongoing research will extend the testing of the Flex-GLS model across varying levels of
congestion to assess how traffic conditions influence the flexibility of demand components. This analysis
will explore the substitution effects in response to changing travel costs, aiming to refine the model for
even more dynamic and adaptive demand estimation.
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