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1 INTRODUCTION

User equilibrium is a key concept in transportation modeling for managing transportation net-
works. Traditional models assume travelers can choose any route between their origin and
destination. However, in reality, each route involves resource consumption, such as time or en-
ergy, and is influenced by factors like congestion. Travelers must select routes where resource
consumption stays within their budget. While some studies have considered such budget con-
straints with flow-independent resource consumption (Jiang et al., 2012), actual consumption is
often flow-dependent.

This paper explores budget-constrained user equilibrium with flow-dependent resource con-
sumption using a general setting for congestion games involving users and facilities. Users decide
whether to visit a facility to gain utility, consuming part of their budget. Both utility and resource
consumption depend on aggregate demand. Resource consumption has an upper limit, preventing
strategies that exceed the budget. This model applies to scenarios such as facility planning in en-
tertainment parks, where users face queuing and limited time, and energy-constrained transport
tools like electric or unmanned aerial vehicles, where congestion impacts battery consumption.

The literature has scarcely addressed this type of user equilibrium, with most related stud-
ies focusing on electric vehicle service planning. He et al. (2014) first formulated two network
equilibrium models considering flow-independent and flow-dependent battery consumption re-
spectively. Xu et al. (2017) expanded on this by incorporating both battery electric and gasoline
vehicles. However, these works primarily focus on formulating equilibrium conditions and lack
efficient algorithms tailored to this problem. Liu & Song (2018) proposed a solution approach
by transforming the equilibrium into a non-convex optimization problem. Further exploration
of the problem’s structure is needed to develop more efficient algorithms. Niroumand et al.
(2022) employed a penalty-based algorithm that iteratively adjusts penalties on each sub-path.
However, this penalty scheme is somewhat heuristic and lacks a theoretical guarantee.

In this study, we introduce a novel application of Quasi-Variational Inequality (QVI) to
formulate the general budget-constrained user equilibrium. We establish the equivalence be-
tween the equilibrium conditions and the QVI problem. To solve it, we employ an Augmented
Lagrangian Method (ALM)-like algorithm. This approach addresses a series of Variational In-
equalities (VIs), within which we solve the restricted master problem and generate new feasible
strategies through column generation (CG). Finally, we demonstrate the effectiveness of our
algorithm through numerical experiments.
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2 THE MODEL AND ALGORITHM

2.1 Model setup

We consider a scenario with I types of users, each having a total demand λi, and J facilities,
each with a service rate µj . Each user has a strategy set defined as:

Si ⊆ S = {0, 1}J , (1)

indicating that users can choose whether to visit any facility j to gain a benefit ωij while incurring
a waiting time cost cij . We use δsj = 1 to indicate that strategy s ∈ S includes choosing facility
j and 0 otherwise. The proportion of type-i users choosing strategy s is represented by ris.

The waiting time at facility j, tj(qj), is a continuous, strictly increasing function of the
aggregate demand rate qj from all user types to the facility, calculated as:

qj =
∑
i∈[I]

λi

∑
s∈Si

risδsj . (2)

Similarly, the waiting cost cij(qj) is also a continuous, strictly increasing function of qj . We
calculate the utility as the difference between the benefits and the costs incurred at the chosen
facilities, which is then continuous and strictly decreasing with qj , expressed as:

wis =
∑
j∈[J ]

(ωij − cij) δsj . (3)

Each user type i has a time budget τi, imposing a constraint on the total waiting time they can
afford. This constraint is expressed as:

es =
∑
j∈[J ]

tjδsj ≤ τi. (4)

At the user equilibrium, the following two conditions should be held:

If es > τi, s ∈ Si, i ∈ [I], then ris = 0; (5a)
If ris1 > 0 and es2 < τi, s1, s2 ∈ Si, i ∈ [I], then wis1 ≥ wis2 . (5b)

The first condition indicates that a strategy can only be selected if the budget it consumes do
not exceed the upper limit. The second condition implies that for a chosen strategy, the utility
it generates should be at least as much as any other feasible strategy.

2.2 A QVI formulation

We address a QVI problem, denoted as QVI(Ω,F ), involving a vector-valued function F and a
set-valued function Ω. The objective is to find a vector r∗ ∈ Ω(r∗) such that:

(r − r∗)T F (r∗) ≤ 0, ∀r ∈ Ω(r∗). (6)

In our context, r represents a vector with components ris, and F is defined component-wise as:

F (r) = [λi · wis(r)]s∈Si, i∈[I]. (7)

The set Ω(r∗) is characterized by the following conditions:

Ω(r∗) =
{
r
∣∣∣1Tri = 1, ri ≥ 0, ∀i ∈ [I]; 0 ≤ ris ≤ γis(r

∗), ∀s ∈ Si, i ∈ [I]
}
, (8)

where γis represents the maximum proportion of i-type users that can utilize strategy s assuming
other users do not alter their choices. It is calculated by:

γis(r
∗) = Proj[0,1] (max {ris|τi ≥ es(r̃is(r

∗, ris))}) , (9)

where r̃is(r
∗, r) is the vector obtained by replacing the (i, s)-th entry with r while keeping all

other entries the same as in r∗.
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Proposition 1 A vector r∗ satisfies the user equilibrium conditions (5) if and only if it solves
the QVI(Ω,F ) problem.

We will discuss existence and uniqueness of the user equilibrium in the full paper.

2.3 Solution algorithms

Algorithms intended for general QVI problems can be tailored to solve (6). We pick the algorithm
proposed by Pang & Fukushima (2005), which employs an ALM-like strategy to address flow-
dependent constraints by using the augmented Lagrangian and solving a series of VIs. The
solution procedures bear similarity with the heuristic method of Niroumand et al. (2022), yet it
is further refined within the QVI and ALM framework. The subsequent Algorithm 1 details our
implementation based on the approach of Pang & Fukushima (2005).

Algorithm 1 An ALM-like algorithm for QVI(Ω,F )

1: Initialize: ϱ0 ← 1, ε01 ← +∞, ε02 ← +∞, u0
is ← 0, ∀s ∈ Si, i ∈ [I], and k ← 0

2: Define:
Ω̄ =

{
r
∣∣1Tri = 1, ri ≥ 0, ∀i ∈ [I]

}
(10)

3: while εk1 > ϵ̄1 or εk2 > ϵ̄2 do
4: Define:

F k(r) = F (r)−
[(
uk
is + ϱk (ris − γis(r))

)+]
s∈Si,i∈[I]

(11)

5: Solve: rk ← VI(Ω̄,F k)
6: Solve: wi ← maxxj∈{0,1}

∑
j∈[J] wij(r

k)xj s.t.
∑

j∈[J] tj(r
k)xj < τi, ∀i ∈ [I]

7: Update:

1. ϱk+1 ← ρ · ϱk

2. εk+1
1 ←

∑
i∈[I] λi

∑
s∈Si

rkis(es−τi)
+∑

i∈[I] λiτi

3. εk+1
2 ←

∑
i∈[I] λi

∑
s∈Si

rkis(wi−wis)
+∑

i∈[I] λiwi

4. uk+1
is ←

(
uk
is + ϱk [ris − γis(r)]

)+
, ∀s ∈ Si, i ∈ [I]

5. k ← k + 1

8: end while

The algorithm iteratively updates the function F k by incorporating penalty terms and dual
variables, and then solves VI(Ω̄,F k) to find a vector r∗ ∈ Ω̄ such that:

(r − r∗)T F k(r∗) ≤ 0, ∀r ∈ Ω̄. (12)

During each iteration, the penalty parameter ϱk is increased, and the error measures along with
dual variables are updated to reflect the feasibility of rk. Regarding the error measures, we
propose the following:

Proposition 2 If εk+1
1 = 0, then rk satisfies the equilibrium condition (5a). If εk+1

2 = 0, then
rk satisfies the equilibrium condition (5b).

To address VI(Ω̄,F k), we employ the projection-type algorithm (Harker & Pang, 1990) with a
CG framework (Lawphongpanich & Hearn, 1984).

We will also discuss the convergence results of Algorithm 1 in the full paper.
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3 NUMERICAL RESULTS

We consider a scenario with I = 10 types of users and J = 20 facilities. The strategy set is
defined as Si = {0, 1}J . The demand λi is set between 4, 000 and 6, 000, the service rate µj

is set between 50 and 450, the benefit ωij is set between 125 and 375, and the budget τi is set
between 500 and 1, 500. The waiting time is calculated as tj(qj) =

qj
µj

, and the waiting cost is
proportional to the waiting time with the value of time set to 1. Figure 1 (left) displays the error
measures εk+1

1 and εk+1
2 . Figure 1 (right) present the waiting time tj(qj(r

k)) at each facility,
with the red line representing the average waiting time across all facilities. These visualizations
both demonstrate the algorithm’s convergence.
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Figure 1 – Error measures and queue waiting time
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