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1     INTRODUCTION 
The COVID-19 pandemic drastically reduced public transportation usage, prompting Chinese cities 

to promote customized bus (CB) services as a safer alternative. While CB services offer flexible, 

efficient transit with reduced infection risk, operators must balance safety measures with profitability, 

providing valuable lessons for future epidemic preparedness. 

CB route design is the primary decision variable in the paper, as it directly influences in-vehicle 

travel time and infection risk. CB routing problem has been formulated as vehicle routing problem 

with pickup and delivery (VRPPD). However, existing CB-VRP models have several limitations: 

Firstly, most models assume fixed travel demand, neglecting the impact of travel cost changes 

on demand. Secondly, the in-vehicle infection risk cost during epidemics is not considered (e.g., Ma, 

Zeng, and An 2023), despite its significant influence on passenger travel behavior. Thirdly, as stated 

in (Huang et al. 2023), in a CB scenario, the social distance in a vehicle is associated with the seat 

occupancy rate, while the duration of ride is influenced by route design. However, CB route design 

model that optimizes the seat occupancy rate setting has not yet been reported. In addition, existing 

models do not consider the social responsibility of operators in preventing and controlling epidemics. 

Finally, current algorithms lack efficient solutions for integrated route planning and seat occupancy 

rate optimization (e.g., Ma, Yang, and Li 2023). 

The main contributions of this paper are as follows: 

1. This paper integrates the maximum seat occupancy rate setting problem into the CB route 

planning model under the assumption of elastic demand. 

2. Considering the in-vehicle infection risk cost in terms of the passenger travel cost, a 

modified Wells–Riley model is used to estimate the in-vehicle infection risk cost. 

3. The genetic algorithm combined with a simulated annealing algorithm and embedded local 

search descent algorithm (M-SAGA) is adopted.  

 

2     MODEL FORMULATION 
 

2.1  In-vehicle infection risk cost 
To assess the in-vehicle infection risk cost of CB, the Wells–Riley model (Riley, Murphy, and Riley 

1978) is modified to directly correlate the risk with the number of passengers and the duration of the 

ride. The infection probability on section (𝑖, 𝑗) of route 𝑟 can be calculated as:  

  𝑃𝑖,𝑗
𝑟 = 1 − exp((𝑓𝑖,𝑗

𝑟 · 𝛼 · 𝜁 · 𝑡𝑖,𝑗 · 𝜆) (𝜀 · √
𝜃

𝑓𝑖,𝑗
𝑟 )⁄ ) , ∀𝑖, 𝑗 ∈ 𝑁+, 𝑟 ∈ 𝑅,           (1) 

where 𝑓𝑖,𝑗
𝑟  is the number of passengers per vehicle for section (𝑖, 𝑗) of route 𝑟, 𝑡𝑖,𝑗  is the in-

vehicle exposure time for section (𝑖, 𝑗), 𝜁 is a coefficient determined by the quanta production rate 

and respiratory ventilation rate, and 𝜆 is the mask filtration coefficient. 

The in-vehicle infection probability of passengers from OD pair 𝑔 can be calculated as: 

   𝑃𝑔 = 1 −∏ (1 − 𝑥𝑖,𝑗
𝑟,𝑔

· 𝑃𝑖,𝑗
𝑟 ),𝑖,𝑗∈𝑁+,𝑟∈𝑅 ∀𝑔 ∈ 𝐺,             (2) 

where 1 − 𝑥𝑖,𝑗
𝑟,𝑔

· 𝑃𝑖,𝑗
𝑟  is the probability of not infecting passengers from OD pair 𝑔 for section 

(𝑖, 𝑗) of route 𝑟. Finally, the in-vehicle infection risk cost of OD pair 𝐶inf
𝑔

 can be determined by 𝑃𝑔, 

the number of days required to recover from infection 𝑟day, and the loss per day rest 𝐶day, which is 

formulated as: 

    𝐶inf
𝑔

= 𝑃𝑔 · 𝑟day · 𝐶day, ∀𝑔 ∈ 𝐺.              (3) 



  2 

 

TRISTAN XII Symposium  Original abstract submittal 

2.2  Optimization model 
In this paper, the objective is to maximize the operator's profit while considering the operator's 

responsibility for epidemic prevention during outbreaks. The CB routing and maximum seat 

occupancy rate setting optimization model can be formulated as follows: 

max 𝑍(𝐱, 𝐲, 𝛅, 𝐤) = ∑ (𝑑𝑔𝐶fare
𝑔

) − 𝜂1∑ 𝑘𝑟𝑟∈𝑅𝑔∈𝐺 − 𝜂2𝑞veh ∑ ∑ (𝑦𝑖,𝑗
𝑟 𝑡𝑖,𝑗𝑘

𝑟) −𝑖,𝑗∈𝑁𝑟∈𝑅 𝜂3∑ (𝑃𝑔𝑑𝑔)𝑔∈𝐺 , (4) 

subject to 

    𝑦𝑖,𝑗
𝑟 = {

1,∑ 𝑥𝑖,𝑗
𝑟,𝑔

𝑔∈𝐺 > 0

0, otherwise
, ∀𝑖, 𝑗 ∈ 𝑁, 𝑟 ∈ 𝑅,            (5) 

   ∑ 𝑥𝑖,𝑛
𝑟,𝑔

𝑖∈𝑁,𝑖≠𝑛 = ∑ 𝑥𝑛,𝑗
𝑟,𝑔

𝑗∈𝑁,𝑗≠𝑛 , ∀𝑛 ∈ 𝑁+, 𝑟 ∈ 𝑅, 𝑔 ∈ 𝐺,            (6) 

     𝛿min ≤ 𝛿𝑟 ≤ 𝛿max, ∀𝑟 ∈ 𝑅,             (7) 

    𝑥𝑖,𝑗
𝑟,𝑔

∈ {0,1}, ∀𝑖, 𝑗 ∈ 𝑁, 𝑔 ∈ 𝐺, 𝑟 ∈ 𝑅,             (8) 

and additional constraints include flow conservation constraints, each vehicle starts and ends at the 

depot and route length limitations. 𝑦𝑖,𝑗
𝑟  and 𝑥𝑖,𝑗

𝑟,𝑔
is binary decision variables indicating whether 

section (𝑖, 𝑗) is travelled by route 𝑟 (and serving OD pair 𝑔), 𝛿𝑟 is a positive continuous decision 

variable indicating the maximum seat occupancy rate along route 𝑟, and 𝑘𝑟 is a positive integer 

indicating the number of vehicles dispatched on route 𝑟 , which is required to satisfy all travel 

demands for this route. The number of vehicles dispatched on route 𝑟 is formulated as: 

   𝑘𝑟 ≥ ∑ (𝑥𝑖,𝑗
𝑟,𝑔

· 𝑑𝑔)𝑔∈𝐺 (𝜏 · 𝛿𝑟)⁄ , ∀𝑖, 𝑗 ∈ 𝑁+, 𝑟 ∈ 𝑅, and          (9) 

     𝑘𝑟 ∈ {1,2,3,… }, ∀𝑟 ∈ 𝑅.         (10) 

𝑑𝑔  is travel demand and 𝐶fare
𝑔

 is fare cost of OD pair 𝑔 . 𝜂1, 𝜂2, 𝜂3  are unit costs of fixed 

operating cost, running cost and penalty, respectively. 𝜏 is seat number of a vehicle. Constraint (5) 

requires passengers to travel on valid routes and vehicles not travel empty except for entering or 

existing the depot; constraint (6) requires passengers with the same OD pair to travel on the same 

route. Constraints (7) - (10) define the variable domains. 

 

3     SOLUTION ALGORITHM 

 

Figure 1 –Basic flow diagram of M-SAGA 

To enhance the computational efficiency, a hybrid algorithm called M-SAGA based on genetic 

algorithm (GA) combined with simulated annealing (SA) and an embedded descent local search 

algorithm is proposed to optimize the route planning and the maximum seat occupancy rate setting 

problems. The overall framework of the M-SAGA algorithm is based on the GA procedure, with the 

SA procedure applied in the neighborhood search phase to improve the quality of the solution (Sun 

et al. 2020). A local search algorithm for determining the maximum seat occupancy rate is also 
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developed to enhance computational efficiency. The basic flow diagram of the M-SAGA algorithm 

is shown in Figure 1. 

 

4     NUMERICAL EXAMPLES 
 

4.1  Significance of maximum seat occupancy rate optimization 
An example network with one origin and destination node was developed to illustrate the 

significance of optimizing the maximum seat occupancy rate. As shown in Figure 2, the objective 

value first increases and then decreases as the maximum seat occupancy rate increases. This is 

because, as the maximum seat occupancy rate initially increases, the number of required vehicles 

decreases significantly, increasing the objective value. However, further increases elevate infection 

risk, reducing passenger willingness to choose CB and ultimately lowering the objective value. 

It can be concluded from the result that properly setting the maximum seat occupancy rate can 

give significantly better result (i.e., profit under infection risk control) during epidemic outbreaks. 

 

Figure 2 –Objective value against maximum seat occupancy rate 

 

4.2  Significance of considering the in-vehicle infection risk cost 
This example compared two scenarios using the Sioux-Falls network: without (Scenario A) and with 

(Scenario B) consideration of in-vehicle infection risk cost on passengers’ travel behavior during 

epidemic outbreaks. Key measures are evaluated using both scenarios are presented in Table 1. 

Table 1 –Comparison of the Key Measures in Scenarios A and B 

Scenario 
System 

infection rate 

Average 

route length 

Optimal maximum 

seat occupancy rate 

Fleet 

size 

Number of 

passengers 
Profit 

A 0.0362 97.4 0.995 63 3091 136,740.2 

B 0.0335 88 0.971 59 2821 115,340.7 

Percentage 

difference 
8.2% 10.7% 2.4% 6.8% 9.6% 18.6% 

As shown in Table 1, the system infection rate of Scenario B is 8.2% lower than Scenario A, 

indicating that the system infection rate will be significantly reduced if passengers are able to 

perceive the in-vehicle infection risk correctly during epidemic outbreaks.  

For service planning, Scenario B shows lower average route length, optimal maximum seat 

occupancy rate, and fleet size compared to Scenario A. This is because operators aim to mitigate 

infection risk and attract passengers by limiting route length and seat occupancy rate, which are 

negatively correlated with infection risk. Additionally, number of passengers and profit obtained in 

Scenario B are also much lower than Scenario A. When passengers are aware of the infection risk, 

they will be less willing to travel, resulting in a significant drop in CB revenue and profit.  

These results imply that neglecting passengers’ perceptions on in-vehicle infection risk will lead 

to overestimation of CB passenger demand, CB fleet size required, and most importantly CB profit, 

which may threaten the survival of CB companies during epidemic outbreaks. 

 

4.3  Performance of the M-SAGA 
To illustrate the efficiency of the proposed solution method, the effectiveness of the SA operation, 

and the embedded descent local search algorithm in the M-SAGA algorithm, this example compared 
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the performance of three algorithms: GA with embedded descent local search, SAGA without 

embedded descent local search, and M-SAGA (which combines both). A 30-nodes network is used 

to compare the GA, SAGA and M-SAGA performances. Table 2 shows a summary of the average 

computational results of 10 runs obtained by the three algorithms. 

As shown in Table 2, the improvement between the objective values obtained by the GA and 

M-SAGA is significant, demonstrating that the SA operation can effectively prevent premature 

convergence to a local optimum. Also, comparing the SAGA and M-SAGA, the improvement 

between the objective values is significant, suggesting that the embedded local search can 

significantly enhance solution quality (i.e., higher fitness value of optimal solution) although it may 

require longer computational time. 

Table 2 –Performance Comparisons 

Number 

of nodes  

GA SAGA M-SAGA 

Difference 

between GA 

and M-SAGA 

Difference 

between SAGA 

and M-SAGA 

Avg. 

time (s) 
Avg.obj 

Avg. 

time (s) 
Avg.obj 

Avg. 

time (s) 
Avg.obj 

Time 

(%) 

Obj 

(%) 

Time 

(%) 

Obj 

(%) 

30 5,772.7  39,491.6 6,694.3 47,252.3 7,318.3 50,106.5  21.12 21.18 8.53 5.70 

 

5     CONCLUSION 
This paper proposed a model that jointly optimizes routing and maximum seat occupancy rate setting 

of customized bus (CB), incorporating the in-vehicle infection risk cost into the passengers’ travel 

cost under the assumption of elastic demand during an epidemic outbreak. A modified Wells–Riley 

model was adopted to estimate the in-vehicle infection risk affected by routing and seat occupancy 

rate decisions. Linearization techniques were applied to simplify the proposed model. A hybrid 

algorithm based on Genetic Algorithm (GA) combined with Simulated Annealing (SA) operation 

and an embedded descent local search algorithm was developed to solve this problem.  

Numerical studies were conducted to illustrate the model properties and the effectiveness of the 

proposed solution method. Results indicate that jointly optimizing routing and maximum seat 

occupancy rate of CB can significantly improve the profitability of CB while controlling total 

infection risk of passengers during epidemic outbreaks. Passengers’ perception on in-vehicle 

infection risk is helpful in reducing system infection risk. Neglecting this perception may prevent 

CB operators from achieving optimal operational efficiency and profitability due to overestimate of 

passenger demand, which may threaten the survival of CB companies during epidemic outbreaks. 

Moreover, the integration of both the embedded local search heuristic and SA operations proposed 

in this paper can significantly improve solution quality especially for larger-scale networks 

compared with GA. 
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