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1 INTRODUCTION

Consider a public transport system serving a corridor. There is a long history of analytical models
to determine the optimal strategic decisions, such as frequencies, stops spacing, or subsidies
(Mohring, 1972, Jara-Díaz & Gschwender, 2003, Fielbaum, 2024, Coulombel & Monchambert,
2023). However, little has been done to understand the network-related aspects. In particular,
two usual networks found on different cities worldwide is either having a line covering the whole
corridor, or two lines each serving one segment. The latter is typically observed with the two
lines converging at the CBD, or in a feeder-trunk manner connected at a subcenter. In this
paper, we investigate theoretically under which conditions a divided line is better than a single
one, minimizing the sum of users’ and operators’ costs. In particular, as having two lines would
require transfers, we focus on the role of the pure transfer penalty PTP, a figure representing how
much do users penalize the very fact of interrupting their journey, and for which a wide range of
values have been reported in the literature (Yap et al., 2024, Garcia-Martinez et al., 2018).

2 FORMULATION AND METHODOLOGY

Similar to previous analytical literature on the topic, we consider a linear model, where we focus
on the supply aspects by considering a given demand pattern. We define the General Linear City
(Figure 1) as a path of k nodes {n1, n2, ..., nk}, where all passengers travel in the same direction.
We denote by yg,h the demand from node g to node h and the distance is measured in travel
time. We denote the flow crossing across arc u, u+ 1 as Eq. 1.

ȳu =
∑

g≤uu+1≤h

yg,h (1)
l0 = [n1, n2, ..., nk] (2)

l(0,i) = [n1, n2, ..., ni] (3)

l(i,k) = [ni, ni+1, ..., nk] (4)

S0 = {l0} (5)
Si = {l(0,i), l(i,k)} (6)

We define a line by means of its sequence of stops (Eqs. 2 - 4). The first one is the complete
line in the General Linear City (it stops in each node), and the other two are the result of
dividing the line in the i-th node, which enables offering different frequencies and bus capacities
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at each segment. We define the line structure S0 (Eq. 5) that contains the complete line, and
the alternative line structure Si (eq. 6) formed by the two divided lines divided at node i.

City

n1 n2

...
ni

...

nk−1 nk

S0
... ...

Si
... ...

Figure 1 – Linear city layout and line structures.

The objective is to minimize the total value of the resources consumed (VRC), i.e. the
sum of operators’ and users’ cost. The design variables are the line structure S (S0 or one of the
Si), the frequencies fl of all the lines l involved in S, and the vehicles’ capacity of every line Kl.
The VRC is given by:

V RC(S, f,K) =
∑
l∈S

Bl(S, f)(c0 + c1Kl(S, f)) + Y (pivt̄iv(S, f) + pw t̄w(S, f)) + pRR(S, f) (7)

Where Bl(S, f) is the fleet size. c0 and c1 are, respectively, the fixed cost per vehicle and the
component that grows linearly with its size. t̄iv(S, f) is the average in-vehicle travel time and
ptr is its value; t̄w(S, f) is the average waiting time with value of waiting pw, and R (S, f) the
total number of transfers, each with a penalty pR. Note that pR is independent of the additional
waiting time, so it represents only the annoyance caused by trip interruption. pR is typically mea-
sured in equivalent in-vehicle minutes EIVM, with reported values ranging from 4 to 18 EIVM.
It is convenient to split a line at node i iff minf0,K0 V RC(S0, f0,K0) > minf,K V RC(S1, f,K).
A careful analysis of Eq. (7) yields the following theorem.

Theorem 1: Consider the linear city network {n1, n2, ..., nk}, where the passenger distribution
is given by the upper triangular matrix y and the line structures are S0 = {l0} and Si = l(0,i), l(i,k)
with l0 = [n1, n2, ..., nk], l(0,i) = [n1, n2, ..., ni] and l(i,k) = [ni, ni+1, ..., nk]. Then it is convenient
to split at node i if and only if

4Tc0

(
(k − 1)f∗

0 − (i− 1)f∗
(0,i) − (k − i)f∗

(i,k)

)
− τi(2tc0 + pR)

+2Tc1

(
(k − 1) max

u∈[k−1]
ȳu − (i− 1) max

u∈[i−1]
ȳu − (k − i) max

u∈[k−1]\[i−1]
ȳu

)
> 0 (8)

From Eq. 8, the three conditions than favor the division can be inferred, and are shown in
Table 1. Note that the first condition reveals that transfers have two effects: their direct penalty
through the PTP, and the additional waiting and boarding-and-alighting times.

3 The Divisibility Index: Definition and Application

Conditions in Table 1 can be summarized in the Divisibility Index (DI) to express how favorable
is a node to the division.

Definition 1: Denote ζ l (n) as the number of passengers crossing the n-th node, and li the
length of the section with the largest flow. Then, the divisibility index (DI) of node i is:

DI (i) :=

(
1− τ l (i)

Y
d1

) ∣∣∣∣ max
1≤n≤i

ζ l (n)− max
i≤n≤k

ζ l (n)

∣∣∣∣ (1 + (
|li|+

|li|
|l|

)
d2

)
(9)
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Table 1 – Conditions favoring division.

Condition Interpretation

1 Low number of transfers in i
Transfers increase boarding and
alighting time (and the waiting time),
and are penalized.

2 Large difference in peak flow
between [0, i] and [i, k]

Savings thanks to the fleet reduction
in the section with the lowest flow.

3 Longer section length ([0, i] or [i, k])
of lower peak flow

Savings thanks to the idle capacity
reduction in the section with the lowest flow.

The DI can be used to develop simple rules to decide whether and where to split a line. First,
we consider the best candidate for division as the node with the largest DI. The question then
is whether splitting the line at that node does improve the system. Evidently, this question can
be answered by the evaluation of Eq. 8 at the candidate node; if positive, then divide the line:
we call this the formula procedure. A faster alternative is determining if the DI is large enough,
compared to a predetermined threshold appropriately chosen. If the DI of the best candidate is
above the threshold, then split the line at the node, otherwise, don’t: the threshold procedure.
In both cases, it is natural to generalize the procedure to the possibility of admitting more than
one division per line in an algorithm; it starts with a complete line and determines whether or
not there is a split at its node with the greatest DI. If the decision is to split, then the process
continues recursively on both obtained segments.

The division algorithms are tested (and the relevance of the PTP is examined) in a particular
case of the linear city inspired by the parametric city mode (PCM, Fielbaum et al. (2016)) that
considers n zones, each with a periphery and a subcenter, plus a CBD.. The linear city version
includes four nodes only representing Periphery-own Subcenter-CBD-Distant subcenter, i.e., a
one-zone version of the PCM. The demand distribution is commanded by parameters α, β, γ,
that can be interpreted respectively as how monocentric, polycentric, or dispersed the city is,
with α + β + γ = 1. Crucially, in this city we can evaluate all the possible lines structures and
find the optimal one, providing an exact benchmark to compare our methods.

Following the formulation notation, S0 is the complete line structure, S2 is the line structure
divided in the second node, S3 is divided in the third node and S23 has a simultaneous division
in the second and third node. As inferred above, in the α vs β space it is possible to simulate
monocentric, polycentric and dispersed the cities. When α and β are low, the main destination
in the Distant subcenter, so there are no conditions (Table 1) to the division. If α is high, then
the CBD is the main destination, so the conditions 1 and 2 accomplish for a division in the CBD.
If β is high, the main destination is the Subcenter, so all the condition accomplish for a division
in the Subcenter. Otherwise if α and β are both high, the conditions accomplish for a division
in the Subcenter and the CBD. So, we hope S0 to be optimal close to he origin, S2 optimal for
high values of β, S3 optimal for high values of α and S23 optimal when α and β are high enough.

In the Figure 2 there is a numerical example with different pR values, where the DI parameters
are d1 = 0.9 and d2 = 0.08. The optimal result (Figures 2a and 2d) follows the scheme described
above. More on, we can observe that when the transfers penalty pR increase, then the dominance
of the complete line structure noticeably increase and the double division line structure almost
disappear. On the other hand, if we compare the algorithms results (Figures 2b, 2c, 2e and 2f)
with the optimal figures, is clear the successful of the complete line divisions. In 2c the threshold
is set in 0.15, but in 2f is set in 1.78. So, we can conclude that the pure transfer penalty definitely
has a role. However, the DI also shows that there are other important conditions, and that the
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impact of transfers is not limited to the pure transfer penalty value.

(a) Optimal pR = 0. (b) Formula pR = 0. (c) Threshold pR = 0.

(d) Optimal pR = 0.73. (e) Formula pR = 0.73. (f) Threshold pR = 0.73.

Figure 2 – Result example, pR measured in EIVM.

4 DISCUSSION

We have analytically established the conditions determining whether a divided line is better than
a single one: a low number of transfers, a significant difference in peak flow on each side of the
division, and a longer section of lower peak flow. These three conditions are synthesized into
a new divisibility index DI to measure the suitability for division at any a given node. Two
algorithms that use the divisibility index are proposed to determine whether and where to split
a line. An application of these algorithms to the so-called parametric linear city proves that
they provide an excellent approximation of the true optimal network. Although our results are
obtained within the context of a corridor, they are not limited to it. The expansion of the
algorithms using the DI to the general parametric city model and to any network with a more
complex topology is indeed the next step in this research line, using the division algorithms to
enhance traditional heuristics in any network.
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