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1     INTRODUCTION  
 
Network science has developed methods for elucidating the structure and connection characteristics 
of various data, including infrastructure networks. However, most analyses focus on mathematical 
approaches assuming regular structures, while experimental approaches using real data are limited. 
Road networks, with their unique structural characteristics like degree restrictions and hierarchy, are 
not accurately represented by virtual networks such as grids, which fail to capture the complexity of 
real cities. Having said that, since it is difficult to obtain general results in a small number of real 
cities, the road network generation with the characteristics of real road networks is required. 
Hartmann et al. (2017) recognized road networks as images and generated a generalized road 
network using machine learning. This research aims to develop a road network generation model 
that uses machine learning to represent networks as matrices, making them suitable for network 
science analysis. The contribution of road network generation model is the applicability of growth 
and robustness models in network science to road networks, allowing more generalized results to be 
obtained by using a large number of artificial road networks rather than standard test networks to 
validate transportation network models such as the Sioux Falls-Anaheim networks.  
 

2     ROAD NETWORK GENERATION MODEL 
 
2.1  Matrix-based Generative Adversarial Networks 
 
This research use a machine learning algorithm called Generative Adversarial Networks (GANs) to 
generate road networks. GANs are a type of generative conflict network proposed by Goodfellow et 
al. (2014) and consist of two main components: a generator and a discriminator. The generator tries 
to generate data that is close to the real thing to deceive the discriminator, and the discriminator tries 
to distinguish between the generated data and the real data. Learning proceeds by minimizing the 
probability that the generator will deceive the discriminator and maximizing the probability that the 
discriminator will see through the generated data. This interaction gradually leads the generator to 
produce more realistic data. 

To apply the generated road network to network science analysis that do not require physical 
location information, this study adopts an adjacency matrix representation consisting of only the 
connection structure to generate road networks. We improved the generation model by inputting the 
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adjacency matrix of an real road network as training data and outputting the adjacency matrix. The 
size of the learning and generation adjacency matrices must be equal, so it is necessary to prepare 
the networks for training with the same number of nodes. In the process of generating the network 
using training data, some constraints are placed to reflect the characteristics of the real road network. 
Constrained matrix generation is expected to produce realistic and actionable results that consider 
road and traffic patterns. We add a constraint ensuring that the network is a “connected graph” as a 
basic road property. This constraint is imposed because real cities do not have isolated parts, except 
in special cases such as small islands. In addition to these basic constraints, there are two other types 
of constraints: the degree distribution and the degree correlation. In the degree distribution constraint, 
a degree list of the nodes to be generated is created based on the node degree distribution of the real 
network. Next, a combination of nodes is randomly selected, and links are added so that the specified 
degree is not exceeded. The degree correlation constraint is an iterative process in which links are 
randomly added or removed until the degree correlation is the median of the real road network ±0.1. 
The degree correlation is the correlation between the degrees of two nodes connected by a link, and 
takes values from -1 to 1. Hereafter, the model constrained by degree distribution and the connected 
graph is referred to as Model 1, while that by degree correlation and the connected graph is referred 
to as Model 2. Figure 1 shows the generation flow of network generation. It should be noted that the 
connected graph constraint is adjusted in the final step, after other constraints have been imposed. 

 

Figure 1 – Network generation flow 
 
2.2  Learning and Generation of Meshed Real Road Networks 
 
This study used 10km square mesh units from the ArcGIS Geo Suite Road network data (2023 
edition) for the Kyushu region of Japan as training data. To define the characteristics of the road 
network to be generated, the road network mesh was characterized by clustering analysis using six 
connectivity structure indicators. The six indicators are as follows: the link density is the total road 
length per unit area, the node density is the number of nodes per unit area, the average degree is the 
average number of connections per node, the weighted degree correlation is the strength of the 
connections between nodes, the fractal dimension is an indicator of the complexity of the network 
by a box counting method, and the average shortest path length between all nodes. Based on these 
indicators, the road network mesh in the Kyushu region was clustered using the Ward method, and 
the optimal number of clusters was determined to be 5 by the elbow method. The 613 meshes was 
classified into five clusters: urban, suburban, coastal, coastal (without residential areas), and 
mountainous. 67 meshes included in one cluster that is recognizes as an urban road network with a 
large population were used as training data for network generation model in this paper. One node is 
randomly selected from each mesh and the target is extended to the nodes connected to that node, 
repeatedly until the criteria number of nodes is reached. Here, 500 nodes are used as a criterion, 
based on the condition that 95% of the nodes in each mesh are included. 

Using meshes included in the urban cluster as training data, 100 artificial road networks were 
generated by Model 1 and 2. The generated networks and real road networks were compared using 
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the squared error loss function in equation (1), where, 𝑖  is type of index ( 𝑖 = 1,2, … ,6) , 𝐺  is 
generated network by matrix-based GANs, 𝑅 is real road network, 𝑉𝑎𝑙𝑢𝑒 is the median index 𝑖 
value for a set of networks. The six types of indicators used for comparison are shown in Table.1.  

From Table 1, a comparison of Model 1 and 2 reveals the following features: Model 2 has large 
difference in the number of links, and Model 2 is larger than Model 1 in the average degree and the 
maximum degree. The minimum degree are both 0 due to the connected graph constraint. In degree 
correlations, Model 1 is slightly larger than Model 2 with degree correlation constraints. In cluster 
coefficients, both models have large values and are far from the real roads. From the total loss, Model 
1, with only degree distribution constraint, also keeps degree correlation losses small and is 
evaluated to be a better fit to the real road network. 

Comparisons with real roads for both generation models revealed the features and challenges 
that could be reproduced. In the results of the squared error loss function, Model 2 slightly smaller 
error, with high reproducibility of the mean, maximum, and minimum degrees. However, there is a 
high loss in the reproduction of local connections, such as cluster coefficients, which may be due to 
the emphasis on the overall degree distribution and number of links across the network and the lack 
of consideration for local connections. Figure 2 shows the network connection structure with one 
mesh from the training data and one adjacency matrix generated by Model 1 as examples. These are 
diagrams without location information. It is possible to replicate many network data sets that have 
similar visual characteristics but do not actually exist. Although this paper generates 100 road 
networks with 500 nodes, this number can be flexibly changed. 
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Table 1 – The squared error loss function 𝑦! in each generation model 

Model Num of 
Links 

Average 
degree 

Maximum 
degree 

Minimum 
degree 

Degree 
Correlation 

Cluster 
coefficient Total 

1 0.013 0.013 0.028 0.000 0.023 0.906 0.983 
2 0.044 0.051 0.111 0.000 0.018 0.875 1.099 

RRNG 0.013 0.013 0.028 0.000 0.022 1.000 1.075 
 

 
Figure 2 – Examples of each road network connection structure 

 

3     RANKING LINKS BY ROAD ATTRIBUTES 
 
3.1  Assigning road attributes and the relationships between attributes 
 
The road network generation model up to here is based on an adjacency matrix that does not consider 
road attributes. It is important to consider the rank of the roads, as the real road links has attributes. 
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Road rank also relates to the hierarchical nature of roads, which is an inherent characteristic of road 
networks. Therefore, we propose a method to set the road rank based on the real road attributes for 
Model 1 which had better reproducibility. The elements of matrix generated by Model 1 are assigned 
road ranks corresponding to the speed limit from rank 1 (30km/h) to rank 6 (80km/h). The percentage 
of road ranks for each link corresponds to the percentage of real roads in the urban cluster (30km/h: 
5.1%, 40km/h: 45.9%, 50km/h: 39.5%, 60km/h: 8.8%, 70km/h: 0.4%, 80km/h: 0.3%). In addition, 
the difference in rank between connecting links is limited to a maximum of 4, a restriction to avoid 
connections from local roads to highways. This model that adds rank connection constraints to 
Model 1 is called a ranked road network generation model (RRNG). 
 
3.2  Generated road networks with attributes 
 
100 adjacency matrices with road ranks were generated by RRNG using the real road network of the 
urban cluster as training data. Table 1 shows the squared error loss functions of RRNG is 1.075. The 
average, maximum and minimum degree are small, and the characteristics are close to the real road. 
However, the cluster coefficient is 1, which is not like the real road. The number of links, the average, 
maximum and minimum degree are the same values because the network topology was generated 
using GANs with the same procedure as in Model 1. The ranked constraint slightly reduced the 
degree correlation, however increased the difference in the clustering coefficient, resulting in a slight 
increase in the total. Although Model 1 was superior in terms of the sum of the squared error loss 
function than RRNG, the results of the degree-related indicators show that it was possible to rank 
the road network while maintaining the accuracy of reproducibility of topology characteristics.  
 
4     CONCLUSIONS 
 
This study proposed a road network generation model to replicate artificial road network of the same 
size with road attributes by using the real road network data belonging to the urban cluster of the 
Kyushu region of Japan as training data. The proposed model uses GANs which is one of the 
machine learning methods, to learn and generate adjacency matrices. The model that imposed degree 
distribution and connected graph constraints showed results close to the characteristics of the real 
road networks. By providing road ranks based on speed limits and connection constraints between 
road ranks, we generated a ranked adjacency matrix that maintains the topology specific to the road. 
This provides a large number of road networks with homogeneous connection structures of the 
required size for the validation of the mathematical model. Network Science analysis requiring 
hundreds of test networks also can be applied. 

In the future, there is a need to introduce new constraints to improve local reproducibility, which 
was poor in the proposed model. It is also necessary to verify the possibility of generating road 
networks that are included in other clusters, such as suburban or mountainous areas, rather than the 
urban cluster. Furthermore, an evaluation method is needed to confirm the reproducibility of the 
allocation of road attributes, in addition to maintaining the network topology. 
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