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1. INTRODUCTION 

Evaluating the resilience of engineering systems under extreme events is essential 

for implementing measures to mitigate potential risks and reduce losses in life and 

property1,2. Due to the rarity of extreme events and the significant computational burden 

associated with system performance evaluation, estimating the probability of extreme 

failures can be prohibitively expensive. Importance sampling can enhance the sampling 

efficiency for extreme failure scenarios where system performance deteriorates 

markedly. However, its computational complexity escalates rapidly with the scale of 

the system and the dimension of variables3,4, which limits its applicability in large-scale 

engineering systems. In this work, we propose a graph learning approach that 

successfully reduces the cost of importance sampling in large-scale infrastructure 

networks, exemplified by transportation networks. 

2. METHODOLOGY 

The proposed approach, Importance Sampling based on Graph Auto-Encoder 

(GAE-IS), consists of three main components: pre-sampling on a sub-network using 

the Cross-Entropy (CE) method5 (Fig. 1d), identification of key components through 

GAE (Fig. 1e), and extreme failure probability estimation (Fig. 1f). In this methodology, 

the crude Monte Carlo simulation is utilized to randomly sample network failure 

scenarios on the sub-network, assuming a homogeneous link failure probability. This 

process facilitates the identification of critical links for maintaining network 

functionality—specifically, those whose failure results in substantial performance 

degradation, given that all links share the same failure probability. The sampled failure 

scenarios are then ranked in descending order of their consequent network performance 

indicator, Average Travel Time (ATT). A predetermined percentage (i.e. the 𝜌 

percentile) of these samples, which show significantly deteriorated performance, are 

selected as risk scenarios. The threshold of ATT for filtering out these risk scenarios is 

denoted as 𝜃𝑟.  

The likelihood of each link being included in failed link sets under risk scenarios 

reflects its functional criticality; a higher likelihood indicates greater criticality. This 

likelihood is employed to adjust the failure probability of each link, increasing it for 

critical links and decreasing it for less critical ones, thereby facilitating importance 

sampling. New samples are then generated based on the adjusted failure probabilities. 

Subsequently, the risk scenarios are updated using a new risk scenario threshold, 𝜃𝑟
′ , 

determined as the 𝜌 percentile of the latest sample set. This iterative process continues 

until all risk scenarios are classified as extreme failure scenarios, wherein system 



performance falls below a specified threshold 𝜃𝑒  (𝜃𝑒  is the value at the percentile that 

is rarer than 𝜃𝑟 in the tail of the ATT distribution). The pre-sampling process yields 

the likelihood of sub-network links, which serve as link labels for training the Criticality 

Identifier. This Criticality Identifier, based on the GAE model, uses both the network's 

topology and its supply-demand characteristics as inputs. The transferability of the 

model allows it to be trained on the sub-network and then providing importance weights 

for components in the larger original network. Following this, failure scenarios for the 

larger-scale target network are sampled based on these estimated likelihoods and 

homogeneous or heterogeneous structural failure probabilities of links. The probability 

of extreme failure scenarios is then estimated as follows: 

�̂�𝑞 =
1

𝑛
∑

I𝒙𝒊
𝑔(𝒙𝒊)

𝑞(𝒙𝒊)
𝑛
𝑖=1 , 𝒙𝒊 ∼ 𝑞                       (1) 

where �̂�𝑞 is the estimated probability; 𝑛 is the sample size; 𝒙 represents independent 

variables, denoting a set of failed links in a specific failure scenario; the indicator 

function I𝒙𝒊
 takes the value 1 if the failure scenario is an extreme failure scenario, and 

0 otherwise;  𝑔(𝒙𝒊) is the probability density function of a failure scenario determined 

by the structural failure probability of each link, computed as Eq. (2), and 𝑞(𝒙𝒊) is the 

Importance Sampling Density (ISD) function determined by the likelihood and 

structural failure probability of each link, computed as Eq. (3).  𝑤 = 𝑔(𝒙)/𝑞(𝒙) is the 

importance weight for the failure scenario with the set 𝒙 failed. 
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where 𝑁𝑓 is the number of failed links in the failure scenario with the set 𝒙 failed, 𝜏𝑙𝑖
 

(𝜏𝑙𝑖
> 0) is the structural failure probability of link 𝑙𝑖,  𝑁 is the number of links in the 

network. The modified likelihood obtained by the Criticality Identifier is denoted as 

𝑠𝑙𝑖
 (𝑠𝑙𝑖

> 0), computed as Eq. (5). 

𝑠𝑙𝑖
= {

 
2𝜂𝑁ℎ̂𝑙𝑖

∑ ℎ̂𝑙𝑖𝑙𝑖∈𝐵
      𝑙𝑖 ∈ 𝐵

  1               𝑙𝑖 ∉ 𝐵
                       (5) 

where ℎ̂𝑙𝑖
 is the estimated likelihood output by Criticality Identifier. The ℎ̂𝑙𝑖

 of all 

links is sorted in descending order. The top 𝜂 proportion of links are critical links, and 

the bottom 𝜂 proportion of links are non-critical links.  𝐵 is the set of critical and 

non-critical links. 

The proposed methodology has the potential for application across various 

infrastructure systems characterized by network topological features and cyber or 

physical flows transferring within it, including water distribution, power, and 

communication networks. Furthermore, GAE-IS effectively decouples component 

functional criticality from the risk of failure, with the latter being associated with the 

structural fragility of components and the spatial distribution of disruptive intensity 



caused by potential hazards, collectively referred to as the vulnerability distribution. 

(Fig. 1b). This means that even if the spatial distribution of component vulnerability 

changes, there is no need to reassess the functional criticality of components, enabling 

the rapid derivation of ISD for large-scale networks under multiple hazard scenarios. 

The transferability of Criticality Identifier and decoupling features of GAE-IS 

significantly reduce sampling costs in large-scale networks.  

 

Fig. 1 Comparison of GAE-IS and the CE method, along with an overview of the GAE-IS workflow 

for estimating extreme failure probabilities in road networks. a Schematic diagram of the CE method. b 

Schematic diagram of the GAE-IS method. c Crude Monte Carlo method employed for pre-sampling 

and serving as a baseline for sampling extreme failure scenarios. d Pre-sampling process in GAE-IS to 

estimate the likelihood of each link being included in failed link sets under risk scenarios. e 

Identification of key components and estimation of link likelihood using the Criticality Identifier. f 

Sampling extreme failure scenarios based on the link likelihoods provided by the Criticality Identifier. 

 

3. RESULTS 

We evaluated the performance of the proposed GAE-IS method in road transportation 

systems subjected to multiple link failures. Experimental results on road networks in 

Berlin, Anaheim, the Northern Gold Coast under homogeneous failure risks, and 

Chicago under heterogeneous seismic risks demonstrate that, compared to crude 

Monte Carlo simulations, the proposed method captures more extreme failure 

scenarios with the same sample size (Fig. 2), improving sampling efficiency by 1-2 

orders of magnitude and providing more accurate probability estimates. Our findings 

also indicate that the sampling results are sensitive to the proportion of critical links 

screened within the target network. To further elucidate the factors contributing 

significantly to the functional criticality of links, we conducted perturbation 

experiments6 on the node features. Given that the Criticality Identifier comprises two 

graph neural network layers, its outcomes are influenced solely by the 2-hop 

neighbors of each node. Consequently, we perturb the node features within the 2-hop 

range of each node by substituting them with the mean value of that feature across all 

nodes, and subsequently monitor the magnitude of changes in the estimated link 

likelihood. The results demonstrate that the remaining capacity of nodes is the most 



significant feature across all networks. Although its impact varies among different 

road networks, this finding motivates us to further explore the potential of the GAE-IS 

method for cross-network transferability.

 

Fig. 2 Distribution of ATT for failure scenarios sampled for road networks in Berlin (BMPFC), 

Anaheim, Northern Gold Coast (NGC) and Chicago (CS).  

4. CONCLUSIONS 

The GAE-IS framework proves to be an effective and efficient tool for evaluating 

the resilience of infrastructure systems from the perspective of extreme value statistics. 

It significantly reduces the computational costs associated with sampling extreme 

failure scenarios that can lead to substantial performance degradation in network-

structured infrastructure systems. Central to our methodology is the development of the 

Criticality Identifier—a graph learning model that combines topological centrality 

metrics with flow attributes of network components to assess link criticality. The 

decoupling of link criticality from failure risk allows for the integration of link 

criticality distribution with various vulnerability distributions, thus facilitating a more 

efficient acquisition of ISD functions. This methodology is particularly applicable for 

systems that require substantial computational effort for performance evaluation, 

especially in the context of analyzing extreme scenarios. The advantages of GAE-IS 

suggest promising applications in several key areas, including the design and operation 

of resilient infrastructure systems, the development of resilient cities, and the 

advancement of sustainable communities.  
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