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1 Introduction

In the past decades, passengers’ travel patterns have been reshaped by the new modes of mobility
services, one of which is the urban air mobility (UAM). UAM utilizes vertical airspace for urban
and regional transportation, offering flexible and efficient transport services by leveraging aviation
and autonomous technologies. Companies like Volocopter and Airbus are actively developing air
taxis. Certainly, the widespread adoption of UAM requires designated skyports and air traffic
management systems. Efficiently placing skyports is thus crucial. This study proposes a modeling
framework for skyport locations, aiming to maximize the ridership.

Several studies have explored the strategic planing of UAM. For example, Holden and Goel
(2016) utilized k-means clustering to optimize skyport locations in Los Angeles and London,
focusing on long-distance Uber routes. Rajendran and Zack (2019) estimated demand for air
taxis and recommended skyport locations using a two-phase approach: first, identifying potential
users, and second, applying constrained clustering based on projected demand using New York
City taxi data. Willey and Salmon (2021) modeled the problem as a modified single-allocation p-
hub median problem, proposing five heuristic algorithms to generate feasible solutions. Rath and
Chow (2022) integrated user mode choice behavior into their p-hub median model that maximizes
ridership and revenue. Chen et al. (2022) addressed skyport selection with the objective of
minimizing travel costs while adhering to area constraints. Recently, Kitthamkesorn and Chen
(2024) developed a mathematical programming model for skyport placement, using the “eUnit”
discrete choice model to account for travelers’ mode choices and travel costs.

In this paper, we study the hub location problem of a “two-station” UAM system. Unlike
the location models mentioned above, our model jointly optimizes the skyport locations and
the service route design, i.e., we also consider how to deploy the UAM link given the skyport
locations. We focus on the modal split between selecting the UAM service and the ground-only-
transport option. We then propose a mixed-integer convex program to maximize the ridership.
Moreover, we propose a branch-and-cut Benders decomposition algorithm. Our computational
experiment demonstrates the efficiency of the proposed model and algorithm.

2 Problem description

We study the location problem of the UAM skyports (set I), aiming to maximize the ridership
of the UAM service. We assume passengers are aggregated at geographic demand zones (set M),
and they are traveling from one zone to the other, creating the demand for each Origin-and-
Destination (OD) pair. We use dmn,∀m ∈Mn, n ∈M , to denote the demand of OD-pair (m,n).
Here Mn ⊆M represents the set of origins that have “nontrivial" demand to the destination n.

As shown in Figure 1, passengers can either use the “ground-only” path (m → n), which
directly connects these two zones by private vehicles with a traveling time tmn; or they can
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choose the multimodal options that use UAM in part of their trips. For example, they can assess
station i by ground-transport, take the UAM to station j, and reach the destination by ground-
transport. This process generates pathm→ i→ j → n whose travel time is t̃mijn = tmi+tij+tjn.
If a link is not selected by the operator to provide the service, then passengers cannot use it.

Demand zone Station Ground link

Selected UAM link
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Figure 1 – Ground-only path and multimodal paths with selected UAM links.

To forecast the ridership, we assume that a passenger selects a path based on the random
utility theory. In our setting, the utility of the path m→ n is modeled as

Umn = u(tmn) + ϵmn,∀(m,n) ∈ K (1)

where u(tmn) is the observable utility, defined as a decreasing function of tmn. ϵmn is the
unobservable utility that is assumed to be a random term following some distribution. Similarly,
the utility of the multimodal path m→ i→ j → n is modeled as

Ũmijn = ũ(t̃mijn, tij) + ϵmijn,∀i, j ∈ I, (m,n) ∈ K (2)

where ũ(t̃mijn, tij) is the observable utility, defined as a decreasing function of t̃mijn and tij .
We use the binomial logit model (BLM) where the consideration set consists of two options,

i.e., the ground-only path and the multimodal path with the maximal observable utility. Let
xi, ∀i ∈ I be a binary variable, which is 1 if skyport i is open. Skyport i has a fixed cost of fi.
Define rij ,∀i ∈ I, j ∈ I as a binary variable, which is 1 if the service at link i → j is provided.
The fixed cost of activating service is cij . Then, let ymijn be a binary variable such that ymijn = 1
if path m→ i→ j → n is in the consideration set of OD pair (m,n). We propose the following
Service Network Design Problem for UAM system (SNDP):

max
∑

(m,n)∈K

dmn

∑
i∈I

∑
j∈I e

ũ(t̃mijn,tij)ymijn∑
i∈I

∑
j∈I e

ũ(t̃mijn,tij)ymijn + eu(tmn)
(3)

st.
∑
i∈I

fixi +
∑
i∈I

∑
j∈I

cijrij ≤ B (4)

[SNDP] rij ≤ xi, rij ≤ xj , ∀i, j ∈ I (5)
rii = 0, ∀i ∈ I (6)
rij = 0, if Lij > L∗,∀i ∈ I, j ∈ I (7)∑
i∈I

∑
j∈I

ymijn = 1, ∀(m,n) ∈ K (8)

ymijn ≤ rij , ∀i, j ∈ I, (m,n) ∈ K (9)
ymijn ≥ 0, ∀i, j ∈ I, (m,n) ∈ K (10)
xi ∈ {0, 1}, ∀i ∈ I (11)
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where the objective is to maximize the expected number of users. Constraint (4) is the budget
constraint, limiting the costs of locating skyports and activating the UAM service links to B.
Constraint (5) and (6) enforce that the UAM service at link i→ j can be provided only if both
station i and station j are open; and link i→ i is not allowed. Constraint (7) imposes that link
i→ j cannot be used to provide UAM services if the distance Lij between skyport i and skyport
j exceeds the flying range limit L∗. Constraint (8)-(10) is used to model the BLM. As defined,
path m→ i→ j → n is considered by passengers in OD-pair (m,n) if and only if its observable
utility is the largest among all activated multimodal paths between m and n. Here, the integral
restriction on ymijn is relaxed to ymijn ≥ 0 because ymijn is either 0 or 1 in the optimal solution.
Constraint (11) is the integrality restriction on xi.

3 Generalized Benders decomposition

We solve [SNDP] by the generalized Benders decomposition. By projecting [SNDP] onto the
(x, r)-space, we obtain a master problem with a significantly smaller decision space

[MP] max
∑

(m,n)∈K

Φmn(r) s.t.. (4)− (6), (11) (12)

where the function Φmn(r) is defined by the following subproblem, namely, ∀(m,n) ∈ K,

Φmn(r) = max
y≥0

dmn

∑
i∈I

∑
j∈J πmijnymijn∑

i∈I
∑

j∈J πmijnymijn + 1
(13)

[SP] st.
∑
i∈I

∑
j∈J

ymijn = 1 (14)

ymijn ≤ rij (15)

where πmijn = eũ(t̃mijn,tij)/eu(tmn), ∀i, j ∈ I, (m,n) ∈ K. Note that Φmn(r) is a concave function
over r. For any fixed r̄, we have the (globally) valid inequality for [MP]

βmn ≤ Φmn(r) ≤ Φmn(r̄) +
∑
i∈I

∑
j∈J

S̄mijn(rij − r̄ij),∀(m,n) ∈ K (16)

where S̄mijn is the subgradient of Φmn(r) at r̄ij . (16) is referred to as the generalized Benders
cut (GBC). Using it, [MP] can be modeled by the following MILP (relaxed master problem):

max
∑

(m,n)∈K

βmn (17)

[rMP] st. βmn ≤ Φmn(r̄) +
∑
i∈I

∑
j∈J

S̄mijn(rij − r̄ij),∀(m,n) ∈ K, r̄ ∈ Ξ (18)

(4)− (6), (11)

where Ξ is the set of integer points r, which define GBCs that are generated by evaluating Φmn(r)
at some r values and are then added to [rMP] as needed to cut off non-optimal solutions.

The main challenge to solve [SNDP] using [rMP] is how to generate GBCs, or more specifically,
how to obtain the subgradient S̄mijn at r̄. Here we present an analytical approach. Given the
primal solution (r̄, ȳ), we can obtain the dual values by the following lemma.

Lemma 1. Suppose r̄ is an integer solution from [rMP]. For OD-pair (m,n), let (̂i, ĵ) be such
that ymîĵn = 1. The subgradient S̄mijn can be computed as

S̄mijn = (1− r̄ij)dmn

[
πmijn − πmîĵn
(πmîĵn + 1)2

]
+

∀i, j ∈ I (19)

where [x]+ = max{x, 0}.
With the above result, [rMP] is ready to be solve branch-and-cut approaches.
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4 Numerical experiment

In this section, we conduct numerical experiments to test the proposed Benders approach. As a
benchmark, we consider solving [SNDP] by a mixed-integer conic quadratic program (MICQP)
approach. We use a randomly generated dataset. Here, eũ(t̃mijn,tij) = e−a(Lmi+Lij/ψ+Ljn)−bLij/ψ,∀i, j ∈
I, (m,n) ∈ K and eu(tmn) = ξmn · e−aLmn , ∀(m,n) ∈ K, where Lmi is the distance between origin
m and skyport i; Lij is the distance of link i → j; Ljn is the distance from skyport j to desti-
nation n; and Lmn is the direct distance between origin m and destination n. The distance is
measured in 100 meters. For simplicity, ψ and ξmn are fixed at 3 and 2. By varying parameters
(a, b, B) and considering three sizes of networks, i.e., (|K|, |I|) ∈ {(208, 20), (362, 25), (538, 30)},
we create 54 problem instances. We set a time limit of 3600 seconds for solving these instances.
Figure 2 summarizes the computational results. Clearly, our proposed Benders approach out-
performs MICQP by a large margin: the computational time by MICQP is generally more than
one order of magnitude higher. Benders-based approaches can efficiently solve all instances with
a small amount of computational time.
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Figure 2 – Computational results of 54 instances.

5 Conclusion

We studied the strategic planning of the UAM system where the OD demand and passengers’
route choices were characterized by a discrete choice model. We aimed to maximize the ridership.
A branch-and-cut algorithm was developed to solve the problem in a reasonable time. In the
future, we will present case studies to demonstrate the usefulness of our proposed framework.
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