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1 INTRODUCTION

The electric vehicle (EV) market has seen rapid growth, with global sales hitting around 14 million units
by 2023 (IEA, 2024). Equipped with advanced electronics, these vehicles collect crucial real-time data on
driving and charging behaviors. The data is essential for formulating transportation policies and deploying
charging infrastructure. Furthermore, by engaging in power market activities such as demand response,
frequency regulation, and capacity market leasing, EVs contribute to enhancing grid stability and efficiency,
as well as facilitating greater penetration of renewable energy sources (Li et al., 2023). These capabilities
underscore the critical role of EV data in advancing intelligent transportation systems and promoting the
integration of transportation with the power grid.

However, privacy concerns have limited the sharing of EV data among entities such as power utilities, au-
tomakers, and vehicle owners (Wang et al., 2023). Vehicle owners, for example, worry about their information
being used for targeted marketing or unauthorized tracking (Bilousova, 2024). Given recent advancements
in generative AI (i.e., diffusion models (Ho et al., 2020), ChatGPT (Achiam et al., 2023)), a promising ap-
proach to addressing these issues is to leverage deep generative models for large-scale EV data synthesis.
However, generating high-quality synthetic time-series tabular data remains challenging due to its complex
distributions, mixed data types, and strong temporal-feature correlations, which contribute to a persistent
gap between synthetic and real data quality (Suh et al., 2024). In this study, we propose training generative
models on real-world driving and charging data to generate synthetic EV data that accurately reflects human
behavior while preserving privacy.

2 METHODOLOGY

2.1 Problem setting

Let V = {v1, v2, . . . , vn} denote the ensemble of EVs under study. We define a series of events indexed
by t ∈ {0, 1, 2, . . . , T}, for segmenting trip-based event. For each vehicle vi at time t, an event x

(t)
vi =

(x
(t)
vi,1

, x
(t)
vi,2

, . . . , x
(t)
vi,M

) is constructed, representing M various features. We classify the features into three
distinct categories, each serving a unique role within our sequence data analysis:

a. Static Inherent Features: Constant attributes such as user labels (i.e., commercial or commuting
drivers) and battery capacity that provide essential context for the dataset.
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b. Dynamic Iterative Features: Features that update iteratively over time, such as the start state of
charge (SoC), which is derived from the end SoC of the previous event, and the start location, which
follows from the end location of the previous event. This category also includes the capability to iterate
over time-related aspects like weekday and month for added temporal context.

c. Dynamic Generative Features: Features generated anew at each time step, reflecting the changing
dynamics of the events. This includes event type (i.e., driving and charging), start time, end location,
distance traveled, duration, and end SoC, capturing the dynamic nature of each event.

Based on these three categories, we model charging and driving events as sequential data, as illustrated in
Table 1.

Table 1 – Examples of EV event sequences

Event type End index Start time Distance Duration End SoC Post-event duration Start index Start SoC User label Battery Weekday Month

1 15 10:10 2.1 km 0.1 hr 77% 1 day 16 79% 0 35 kWh Mon Sep
1 13 11:20 22.2 km 0.5 hr 50% 0 day 15 77% 0 35 kWh Mon Sep
0 13 13:00 0.0 km 2.2 hr 100% 1 day 13 50% 0 35 kWh Mon Sep

2.2 Model structure

Given a vehicle vi and its sequence of feature vectors svi = {x(0)vi , x
(1)
vi , . . . , x

(T )
vi }, we define a joint probability

estimator PΦ(svi) parameterized by Φ, expressed as:

PΦ(svi) = Pϕ0(x
(0)
vi )

T∏
t=1

Pϕ(x
(t)
vi | x(t−1)

vi , . . . , x(0)vi ) (1)

Note that Pϕ0(x
(0)
vi ) represents the initial state of the vehicle. This initial state can be defined using either

the original data or user-defined values. To further protect privacy, we use a simple Variational Autoencoder
(VAE) model to generate the initial state. Our comparison between the VAE-generated initial state and the
original data shows minimal differences between the two. The objective is to find the parameter set Φ that
maximizes the likelihood of the observed sequences for all vehicles. Formally, it can be obtained by solving
the following optimization problem:

Φ∗ = argmax
Φ

∏
vi∈V

PΦ(svi) (2)

Here, Φ∗ denotes the optimal set of parameters for the probability model. We employ a decoder only
Transformer (DoT) to develop the sequence model. The model operation is defined as:

(b(1)vi , . . . , b
(T )
vi ) = DoT(x(0)vi , . . . , x

(T−1)
vi ) (3)

where DoT(·) denotes a specialized variant of the Transformer architecture, primarily comprising encoder
blocks with Masked MultiHead Self-Attention layer. Notably, the architecture is recognized as the base blocks
of GPT-3 structure (Brown, 2020). It processes the sequence of feature vectors x

(0)
vi , . . . , x

(T )
vi to capture the

dependencies and relationships within the sequence. The output (b
(1)
vi , . . . , b

(T )
vi ) represents the transformed

sequence where each b
(t)
vi is a feature vector that encapsulates the learned contextual information up to the

t-th event. Eq.(1) can then be formulated as:

PΦ(svi) = Pϕ0(x
(0)
vi )

T∏
t=1

Pϕ(x
(t)
vi | b(t)vi ) (4)

Given that a charging/driving event comprises M interrelated discrete or continuous mixed variables, the
expression can be further formulated as follows:

PΦ(svi) = Pϕ0(x
(0)
vi )

T∏
t=1

Pϕ(x
(t)
vi,1

, x
(t)
vi,2

, . . . , x
(t)
vi,M

| b(t)vi ) (5)
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To model dynamic generative features, we utilize a deep Gibbs sampler for its ability to effectively
generate joint variable distributions. For a random variable x

(t)
vi,j

at t-th event., the conditional probability
can be modeled as follows:

x̃
(t)
vi,j

∼ Pϕj
(x

(t)
vi,j

| x(t)vi,−j , b
(t)
vi ) (6)

where, Pϕj
represents the conditional probability distribution defined by the model parameters ϕj . x̃

(t)
vi,−j

denotes all variables except j at t-th event. Discrete variables are modeled using a Softmax layer, while
continuous variables are handled through a Gaussian mixture model.

The loss function for training is composed of two parts. The first part is naturally the negative log-
likelihood, formulated as:

Lgibbs,LL = −
T∑
t=1

M∑
j=1

logPϕj
(x

(t)
vi,j

| x(t)vi,−j , b
(t)
vi ) (7)

The second component involves constraints for continuous, distance, and end state of charge (SoC) variables,
enforced through penalties.

2.3 Evaluation metric

We evaluate the model’s performance using three metrics:

a) ρ1: Assessing univariate distributions by Jensen-Shannon Divergence for discrete variables and Wasser-
stein distance for continuous ones.

b) ρ2: Evaluating multivariate distributions by grouping discrete variables (e.g., user label, geographic
index, battery capacity) and comparing continuous variables like driving speed (distance/duration)
and charging power (SoC difference/duration) within these groups.

c) ρ3: As proposed by van den Burg & Williams (2021), this metric checks if the model has memorized
the dataset. A value of ρ3 > 1 indicates memorization, while ρ3 < 1 suggests underfitting. An ideal ρ3
is close to 1, showing a balance between generalization and fitting.

3 RESULTS

Our dataset contains approximately 7,019,876 driving and charging records from May 2020 to August 2021,
involving 3,777 EVs in Shanghai. We compared four models with variations in the joint variable distribution
modeling component, specifically using Gibbs sampling, VAE, WGAN, or Bayes decomposition, across three
metrics (see Table 2). We found that our proposed Transformer+Gibbs model performs the best overall in
terms of univariate (ρ1) and multivariate (ρ2) distributions, as well as privacy protection (ρ3). Although
it performs slightly worse than the Transformer+WGAN model on the univariate distribution metric, it
significantly outperforms all other models on the multivariate distribution, demonstrating its strength in
capturing complex relationships.

Table 2 – Comparative analysis of different model performances

Model Layer dmodel ρ1 ρ2 ρ3

Transformer+Gibbs 48 128 0.18 0.47 0.97
Transformer+WGAN 48 128 0.13 0.81 1.10
Transformer+Bayes 48 128 1.18 0.88 1.55
Transformer+VAE 48 128 0.82 2.04 1.17

We also compare the impact of different Transformer widths (i.e., the input embedding size, dmodel) and
depths (the number of stacked layers) on model performance. The results are shown in Table 3. Increasing
model depth by stacking more Transformer layers improves performance more effectively than increasing the
model width. The optimal configuration was achieved with 48 layers and dmodel = 128.

In Figure 1, we present a comparison between the generated model and the original data in terms of the
distribution of trip origin-destination (OD) points, showing that both exhibit very similar patterns. Overall,
our model effectively generates EV driving and charging sequences with distributions similar to the original
dataset while ensuring privacy. This approach also applies to other traffic-related time-series data.
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Table 3 – Comparison of Transformer parameter variations

Layer dmodel ρ1 ρ2 ρ3 Parameter Size (million)

16 64 0.46 0.66 0.87 1.15
32 64 0.41 0.65 0.90 1.95
48 64 0.21 0.52 0.95 2.75
64 64 0.19 0.50 0.96 3.55
16 128 0.47 0.67 0.82 3.91
32 128 0.23 0.51 0.96 7.08
48 128 0.18 0.47 0.97 10.26
64 128 0.22 0.49 0.95 13.43

Original data Sample data
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Figure 1 – Comparison of the OD distribution of driving events
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