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1 INTRODUCTION
The electrification and automation of carsharing services are poised to revolutionize the industry.
Shared autonomous electric vehicles (SAEVs) represent an emerging mobility mode with the
potential to significantly reduce labour costs and greenhouse gas emissions. However, most
existing studies have focused on plug-in charging as the primary refuelling method (Dong et al.,
2022), while battery swapping, an efficient alternative particularly suited for commercial EVs,
has received limited consideration. Battery swapping enables rapid energy replenishment within
minutes and enhances fleet management efficiency, making it a compelling option for SAEVs.

Figure 1 – Illustration of the operational decisions for the SAEV system at given time of day

Daily management of SAEV systems with battery swapping requires balancing vehicle supply
with user demand across stations and optimizing battery charging and swapping schedules at
each battery swapping station (BSS) (Shen et al., 2019). Limited availability of fully charged
batteries (FBs) and swapping slots leads to inevitable queuing at BSSs (Ding et al., 2022), which,
if not considered in dynamic operations, can cause excessive vehicle dwelling times, inefficient
battery swaps, and worsened supply-demand imbalances, thereby increasing operational costs
and reducing demand satisfaction rates. Figure 1 illustrates the operational process of SAEV
systems, including SAEVs, regular stations, and BSSs, highlighting decision-making processes
and the delay costs due to vehicle queues. Despite advancements in modelling and relocation
strategies for BSSs (Cui et al., 2023), the joint optimization of battery management and vehicle
operations, particularly considering vehicle queue delays, remains underexplored. To address
these challenges, we propose a dynamic SEAV and battery in charging bays (CBs) management
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(VBM) problem using dual time-electricity-expanded networks to optimize the battery charging
schedules in CBs at each BSS and vehicle relocation, considering battery swapping queue delays
which adhere to the first-in, first-out (FIFO) principle due to space constraints at BSSs.

2 METHODOLOGY

This paper aims to optimize the operational decisions of a SAEV system with battery swapping.
To maximize the profit, the system operator makes optimal user trip assignment, idle vehicle
relocation, battery charging, and vehicle and battery swapping decisions for finite time periods
T = {1, · · · , |T |}. During the battery swapping process, the operator selects vehicles with low
State of Charge (SoC) to swap with FBs available at the BSSs. The SoC of batteries in SAEVs
and CBs is discretized into multiple levels E = {1, ..., |E|}. The service region is divided into
stations I = {i, j, · · · }, categorized into regular stations, I1 ⊂ I, and BSSs, I2 ⊂ I. Each BSS
consists of a set of CBs, Bi = {1, · · · , |Bi|} for i ∈ I2, and is equipped with one swapping slot
and a finite queue length. We assume that the maximum allowable delay time at a BSS is W
determined by the queue length, and each battery swapping takes s minutes.

To capture the dynamic operational characteristics of the SAEV system, we propose a net-
work model based on two time-electricity-expanded networks, which are coupled through vehicle
and battery swapping. One network models the larger-scale SAEV movements between stations,
as well as parking and swapping at stations. The other network models battery management
within CBs at each BSS, aiming to determine an optimal battery schedule path for each CB,
which represents a sequence of dynamic battery management in a CB such as charging, idleness,
and swapping. To account for vehicle queuing, we introduce link capacity constraints related
to queuing flows, ensuring that the FIFO principle holds. The VBM problem is then formu-
lated as a mixed-integer linear programming (MIP) model, integrating both vehicular flows and
battery schedule paths of CBs within the same framework. To address this NP-hard problem,
we customize an exact branch-and-price (B&P) algorithm, demonstrated to outperform greatly
commercial solvers such as Gurobi in the computational study.

2.1 Network representations

We define two time-electricity-expanded networks to model the operational dynamics.
Battery-related network. As shown in Figure 2(a), for CBs, let Gc(N c,Ac) denote a time-
electricity-expanded network. Each node bt,ei ∈ N c represents a battery with SOC level e ∈ E
stored in CB b ∈ Bi at BSS i ∈ I2 during time period t ∈ T . Each link a = (bt,ei , bt+1,e′

i ) ∈ Ac is
associated with three attributes, BSS i, CB b, start-end SoC difference ea = e− e′. The set of all
battery-related links is Ac = Ac

charge∪Ac
swap∪Ac

idle, where ea < 0 for Ac
charge, ea = |E|−e > 0 for

Ac
swap, and ea = 0 for Ac

idle. The binary decision variable f b
p ∈ {0, 1} indicates whether battery

schedule path p ∈ P is selected for CB b ∈ Bi. The indicator δba,p equals 1 if link a ∈ Ac is part
of path p for CB b, and 0 otherwise.
Vehicle-related network. As illustrated in Figure 2(b), for SAEVs, let Gv(N v,Av) denote
a time-electricity-expanded network. The nodes N v = N v

1 ∪ N v
2 consist of move-park nodes

N v
1 = {nt,e

i , ∀i ∈ I, t ∈ T , e ∈ E}, which represent vehicle locations with time-electricity tags for
movement and parking, and swap-queue nodes N v

2 = {nt,e
iw ,∀i ∈ I2, t ∈ T , e ∈ E , w ∈ T \{T −W+

1, T }, which involve the vehicle swapping and queueing processes. Correspondingly, the links in
Av = Av

1∪Av
2 consist of regular links Av

1 = Av
trip∪Av

relo∪Av
park∪Av

dummy, representing vehicle trips,

relocation, parking, and dummy actions. Each link a = (nt,e
i , nt′,e′

j ) ∈ Av
1 corresponds to either

vehicle movement between stations (i ̸= j, t′ = t+ ta, ea > 0), or parking at the station (i = j,
t′ = t+1, ea = 0). Additionally, swap-queue-related links Av

2 = Av
swap ∪Av

queue ∪Av
prior represent

vehicle swapping, queueing, and priority-dummy actions. Each link a = (nt,e
iw , n

t′,e
iw ) ∈ Av

2 captures
swapping or queueing processes. The vehicle-related decision variables are the flow rates xa on
the links, where xTa , xRa , xPa , xSa, xQa , and xPDa denote the flow rates for user trips, relocation,
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parking, swapping, queueing, and priority-dummy actions, respectively, on their corresponding
link sets Av

trip, Av
relo, Av

park, Av
swap, Av

queue, and Av
prior.

Figure 2 – Illustration of two time-electricity-expanded networks for charging bays and vehicles

2.2 Mixed-integer linear programming model formulation

Building on the above definition and notations, we cast the dynamic management problem of
SAEVs and CBs as an MIP model:

min
x≥0,f∈{0,1}

−
∑

a∈Av
trip

pax
T
a +

∑
a∈Av

relo

crax
R
a +

∑
a∈Av

park

cpxPa +
∑

a∈Av
queue

cqxQa +
∑
i∈I2

∑
b∈Bi

∑
p∈P

cpf
b
p (1)

s.t. Ax = (Vi,e,0)
T ∀i ∈ I, t ∈ T , e ∈ E , (2)∑

p∈P
f b
p = 1 ∀i ∈ I2, b ∈ Bi, (3)

xSa =
∑
b∈Bi

∑
p∈P

(f b
pδ

b
a′,p) ∀a ∈ Av

swap1
, a′ ∈ Ac

swap, (4)

xTa ≤ Di,t,e ∀a ∈ Av
trip,

∑
e∈E

xPa ≤ Ci ∀a ∈ Av
park, and

∑
e∈E

xSa ≤ ⌊△T /s⌋ ∀a ∈ Av
swap1

, (5)∑
e∈E

xSa ≤ ⌊△T /s⌋ −
∑

a′∈Sa′

∑
e∈E

xSa′ ∀a ∈ Av
swap2

, (6)

where objective function (1) aims to minimize net loss (i.e., maximize profits), obtained by
subtracting total revenue from vehicle relocation, parking, queuing, and battery charging costs.
Eq. (2) enforces vehicular flow conservation, Eq. (3) optimizes battery schedules for each CB, and
Eq. (4) couples vehicles and batteries for swapping. To model the queueing process within the
network Gv, Av

swap is divided into actual Av
swap1 = {a = (nt,e

iw , n
t+1,|E|
i )}, and possible swapping

links Av
swap2 = {a = (nt,e

iw , n
t,e
iw−1)}. For a possible swapping link a = (nt,e

iw , n
t,e
iw−1), a ∈ Av

swap2,
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define Sa as the set of queuing links with a′ = (nt′−1,e

iw′ , nt′,e

iw′ ), t′ = t, 1 ≤ w′ ≤ w − 1, a′ ∈ Av
queue.

Eqs. (5) impose side constraints on flow types, while Eq. (6) ensures FIFO compliance by limiting
swapping link capacity based on queuing flows.

2.3 Branch-and-price algorithm

The proposed large-scale MIP model, replete with numerous path-based variables, presents a
complex challenge due to its coefficient matrix and vehicle flow constraints not being totally
unimodular, which hinders straightforward solutions using solvers. Inspired by its intrinsic
block-diagonal structure, we customize an exact solution method, B&P algorithm, significantly
improving the computational efficiency. The procedure of the B&P algorithm is summarized as
follows,

Figure 3 – The flowchart of the customized branch-and-price algorithm

3 CONCLUSION
Extensive numerical experiments conducted on large-scale instances generated from realistic data
in Shanghai highlight the superior computational performance of the proposed B&P algorithm
relative to the benchmarking methods. Sensitivity analyses are conducted on parameters such
as the number of BSSs and CBs, battery swapping duration and time-of-use (ToU) electricity
prices. Numerical results show that ToU prices have a significant impact on the battery of CB
charging schedules and vehicle operations, with an increase in FB inventory during low-price
periods. Additionally, waiting queues at BSSs tend to have more vehicles with lower SoC levels,
as queuing becomes a more cost-effective option under such conditions. Overall, the proposed
model and customized algorithm offer a management tool for dynamic vehicle operations and
battery management of the emerging SAEV systems in practice.
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