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1 INTRODUCTION

Ride-hailing platforms (e.g., Uber and Lyft) recently started to offer pre-booking services tar-
geting time-sensitive customers, e.g., on business trips. Customers can pay an additional pre-
booking fee to reserve a ride in advance, and the operator commits to sending a driver to the
agreed pick-up location at the specified time. From an operational perspective, pre-booked rides
offer higher planning certainty for the operator, as the travel demand is known in advance.
However, the commitment to serving pre-booked requests may force the operator to reject more
profitable on-demand requests if the driver supply cannot meet overall demand. Moreover, in-
troducing a pre-booking service may induce travel demand in areas with traditionally low driver
availability, e.g., low-demand suburban areas, leading to a shift in the travel demand distribution,
i.e., creating a mismatch between the trip distribution of pre-booked and on-demand requests.
Consequently, implementing a pre-booking service introduces a trade-off between higher planning
certainty and the rise of unfavorable rides due to shifts in the demand distribution.

Despite the extensive literature on optimizing ride-hailing systems (see, e.g., Bertsimas et al.
2019), only few studies have focused on mixed-service ride-hailing, i.e., with a mix of on-demand
and pre-booked requests (see, e.g., Duan et al. 2020, Abkarian et al. 2022, Elting & Ehmke 2021),
particularly regarding shifts in the travel demand distribution. To address this research gap, we
propose a novel two-stage stochastic optimization model that maximizes the sum of pre-booking
fees and the expected total profit from serving pre-booked and on-demand requests. Specifically,
the operator decides to accept or reject incoming pre-booking requests in the first stage, before
assigning vehicles to requests and planning routes in response to incoming on-demand requests in
the second stage. Following a data-driven approach, we present a sample average approximation
(SAA) formulation and a scalable heuristic algorithm. We conduct experiments based on New
York City yellow taxi data and derive managerial insights indicating that the proposed mixed-
service system can lead to increased profit compared to the purely on-demand baseline system,
even in environments with strong distributional shifts.

2 METHODOLOGY

We consider a profit-maximizing ride-hailing operator who centrally controls a fleet of vehicles V
of fixed size. A ride request is a tuple i = (oi, di, si, ei, pi), indicating its origin oi, destination di,
pick-up time window [si, ei], and price pi paid to the operator. Each vehicle v ∈ V is associated
with an initial available time sv and location ov. Pre-booking requests enter the system before
the start of the operating period, and the operator decides to accept or reject each request. By
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accepting a pre-booking request, the operator commits to serving it at its earliest pick-up time.
During the operating period, on-demand requests enter the system and the operator decides to
accept or reject each request and dispatches vehicles to serve all accepted requests, i.e., both
pre-booked and on-demand. Note that the operator makes pre-booking acceptance decisions
without knowledge of future on-demand requests and before determining vehicle routes.

We introduce a two-stage stochastic optimization formulation. The first stage involves ac-
ceptance decisions of pre-booking requests before the start of operations, while the second stage
corresponds to the operating period and involves acceptance decisions of on-demand requests,
the assignment of requests to vehicles, and routing decisions. Let D1 be the set of all pre-booking
requests and D2 be the uncertain set of all on-demand requests that arrive throughout the op-
erating period. Let xi be a binary variable, taking value 1 if the operator accepts pre-booking
request i ∈ D1. Each pre-booking request i ∈ D1 incurs an additional pre-booking fee pi,1. The
two-stage stochastic optimization problem maximizes the revenue from pre-booking fees and the
expected profit from the second-stage problem:

max
x∈{0,1}|D1|

∑
i∈D1

xi pi,1 + ED2 [Π(x;D1, D2)], (1)

where Π(x;D1, D2) is the optimal objective value from the second-stage problem.
We are interested in analyzing the pre-booking acceptance decisions of the first-stage problem.

To not bias our analyses, we compute an upper bound for the second stage by assuming that all
on-demand requests are revealed simultaneously, corresponding to a setting with perfect foresight.
Since the true underlying distribution of on-demand requests is unknown, we approximate the
second-stage objective value by SAA. Let K be a set of scenarios describing possible realizations
of the on-demand request set Dk

2 , for k ∈ K. We introduce the SAA model formulation:

max
x∈{0,1}|D1|

∑
i∈D1

xi pi,1 +
1

|K|
∑
k∈K

Π(x;D1, D
k
2), (2)

where we replace the expectation in Model (1) with the average second-stage objective value
among the scenarios.

We define the second-stage problem on a directed graph G = (V,A), where each request
i ∈ D1 ∪D2 is represented by a node. An arc (i, j) ∈ A represents the possibility for a vehicle
to pick up customer j immediately after serving request i. Each arc (i, j) ∈ A has a travel time
Tij representing the time to serve request i and to drive from i’s destination di to j’s origin oj .
Each arc (i, j) ∈ A also has a profit πij corresponding to the fare paid by j minus the cost
of driving from di to oj (dead-heading) and from oj to dj (occupied trip). In addition, each
vehicle v ∈ V is represented by a node in V, and an arc (v, i) ∈ A represents the possibility for
request i ∈ D1 ∪D2 to be the first request picked up by vehicle v ∈ V . Each arc (v, i) ∈ A has
a travel time Tvi from the initial location of vehicle v to the origin oi of request i, and a profit
πvi, i.e., the fare paid by i minus the cost of driving from ov to oi and from oi to di.

The second-stage vehicle dispatching problem assigns a sequence of requests to each vehicle,
maximizing the operator’s profit subject to routing and pick-up time window constraints. Let yi
be a binary decision variable that takes value 1 if the operator accepts the on-demand request
i ∈ D2. We represent routing decisions by binary variables zvi and zij , where zvi = 1 if request i
assigned to vehicle v as a first request in the sequence, and zij = 1 if request i is picked up by
a vehicle immediately after request j. Variable ti ∈ [si, ei] models the pick-up time of request i.
Given pre-booking and on-demand request sets, D1 and D2, and first-stage decisions x, we
formulate the second-stage problem as follows:

Π(x;D1, D2) = max
∑

(i,j)∈A

πij zij (3)

s.t. yi = xi ∀i ∈ D1 (4)
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yj =
∑

i∈N−(j)

zij ∀j ∈ D1 ∪D2 (5)

∑
j∈N+(i)

zij ≤ yi ∀i ∈ D1 ∪D2 (6)

∑
i∈N+(v)

zvi ≤ 1 ∀v ∈ V (7)

tj − ti ≥ (sj − ei) + (Tij − (sj − ei))zij ∀(i, j) ∈ A (8)
si ≤ ti ≤ ei ∀i ∈ D1 ∪D2 ∪ V (9)
zij ∈ {0, 1}, yj ∈ {0, 1} ∀(i, j) ∈ A (10)

where N+(i) = {j ∈ V : (i, j) ∈ A} is the set of nodes that are reachable by the arcs going out
of i and N−(j) = {i ∈ V : (i, j) ∈ A} is the set of nodes that can reach j by its incoming arcs.
Constraints (4) are linking constraints and ensure that pre-booking requests are served (or not)
in accordance with first-stage decisions. Constraints (5)–(7) ensure the conservation of flow and
that each request is assigned to at most one vehicle. Constraints (8) ensure that the pick-up
time windows are satisfied, where we assume, w.l.o.g., that tv = sv = ev for vehicle v ∈ V , and
we enforce that wait times for pre-booked customers are equal to zero by setting ti = si = ei for
all i ∈ D1. Constraints (9)–(10) define the variable domains.

The proposed SAA model is a challenging optimization problem as it requires the solution
of integer subproblems that must satisfy linking constraints with respect to first-stage decisions.
To address these challenges, we develop a scalable heuristic algorithm that separately solves
approximations of the second-stage subproblems, where we fix customer pick-up times, and
remove the linking constraints related to first-stage decisions. To define the approximate second-
stage subproblem, we rely on a directed dispatching graph Ĝ. We place an arc (i, j) in Ĝ if
ei + Tij ≤ ej , which ensures that pick-up times are fixed to ti = ei for all i ∈ D1 ∪D2, resulting
in an acyclic graph. Then, each resulting approximate subproblem can be solved as a K-disjoint
shortest path problem (K-DSPP), which can be solved in polynomial time, e.g., as proposed
in Schiffer et al. (2021).

Our heuristic algorithm separately solves the approximate subproblem corresponding to each
scenario and then determines first-stage decisions by combining the individual solutions to the
subproblems. At a high level, the heuristic algorithm consists of three main steps:

1. Solving the approximate subproblems: We separately solve the approximate sub-
problem for each scenario.

2. Consensus fixing: We determine a consensus among the subproblems regarding first-
stage decisions by majority voting.

3. Arc weight adjustment and re-solving: We adjust arc weights, i.e., profits, based on
the first-stage decisions and re-solve each subproblem, with the aim of enforcing consistent
first-stage decisions among the scenarios. Specifically, for each pre-booking request j ∈ D1,
we update the profit πij associated with arc (i, j) by adding a sufficiently large constant if
j is accepted. Otherwise, if j is rejected, we subtract a sufficiently large constant from πij .

3 RESULTS

We adopt the data set from NYC Taxi & Limousine Commission (2010) for our case study,
focusing on the Yellow Cab rides of Tuesday, January 26, 2010, from 9:00 a.m. to 3:00 p.m.
Rides from and to Manhattan constitute 92.17% of all rides in the considered time horizon.
In order to study distributional shifts in the travel demand, we also consider rides from or to
the boroughs of Brooklyn, Queens, and The Bronx. We analyze the effect of distributional
shifts by sampling pre-booking requests from a different distribution than on-demand requests.
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Specifically, given the number of pre-booking requests m and given the share of pre-booking
requests ν that are outside of Manhattan, i.e., with pick-up or drop-off locations outside of
Manhattan, we construct D1 by sampling mν requests from boroughs outside Manhattan and
m(1 − ν) requests from within Manhattan. Values of ν close to 0 correspond to settings with
weak distributional shifts while values close to 1 correspond to strong distributional shifts.

We compare the performance of the SAA model against two baseline policies. First, the
accept-all policy accepts all incoming pre-booking requests regardless of their attributes. Second,
the reject-all policy corresponds to the setting in which the operator does not offer a pre-booking
service. In this case, we assume that customers who would have pre-booked a ride request on
demand instead, ensuring that the total number of requests remains consistent across policies.
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Figure 1 – Out-of-sample performance of the SAA model

Figure 1 shows the total profit from the SAA model and the baseline policies for increasing ν.
We observe several interesting insights. First, the SAA solutions have significantly higher profit
than the reject-all baseline, regardless of the parameter value ν. Accordingly, optimizing the
mixed-service system based on the SAA model leads to an increase in profit compared to the
purely on-demand system, regardless of how strong the distributional shift is. Second, greedily
accepting all pre-booking requests can lead to a significant decrease in profit compared to the
purely on-demand system, especially in regimes with stronger distributional shifts (ν ≥ 0.52).
Third, in settings with weak distributional shifts, the greedy accept-all policy is more profitable
than the reject-all policy, showing performance comparable to the SAA solutions. Further results
and managerial insights will be presented at the conference, including analyses of structural
properties, sensitivity analyses, and results from different heuristic policies.
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