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1 INTRODUCTION

In the urban rail systems of large cities like Beijing, Shanghai, and Tokyo, passenger demand
fluctuates significantly throughout a day. For example, at Tiantongyuan station, one of the
largest metro stations in Beijing, around 84% of the total daily passenger volume arrives between
7:00 AM and 9:00 AM. Consequently, designing a demand-oriented train timetable that adjusts
service frequency based on time-varying passenger demand is essential for balancing service
quality with operational costs in urban rail systems.

With the increasing availability of passenger travel data, such as from Automated Fare Col-
lection (AFC) systems or mobile phones, the demand-oriented train timetabling problem (DTP)
has gained significant research attention in recent years. Barrena et al. (2014) developed three
mixed-integer linear programming (MILP) formulations for DTP aimed at minimizing the aver-
age passenger waiting time. Their results demonstrate that, compared to a constant-frequency
timetable, a demand-oriented timetable reduces passenger waiting time by an average of 30%.
Using a time-dependent origin-destination (OD) matrix as input, Niu et al. (2015) proposed two
mixed-integer programming (MIP) formulations with quadratic objective functions and linear
constraints for DTP with skip-stop patterns. This model was further extended by Yin et al.
(2017), incorporating bi-objective functions to minimize both passenger waiting time and sys-
tem energy consumption. More recently, Liu et al. (2023) introduced a two-phase approach
for the train scheduling problem that integrates timetables, time-varying passenger flows, and
train speed profiles, with the objective of reducing both passenger travel time and train energy
consumption.
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Figure 1 — Number of arriving passengers at Sihui station, Beijing metro (Aug. 8-10, 2023)
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Overall, the studies mentioned above rely on the average demand over a period of days, often
represented by an expected time-dependent OD matrix or arrival rate. However, in practice,
metro passenger volumes are uncertain and influenced by various factors such as weather, day of
the week (weekday or weekend), and even temperature. Figure 1 presents historical data from
Sihui station in the Beijing metro, showing passenger arrival rates over three days with different
weather conditions. The data reveal that passenger numbers tend to increase on rainy days (day
3), likely due to greater road congestion caused by the weather.

By analyzing a large-amount of historical data, our study proposes a data-driven approach
for DTP considering contextual information. We particularly adopt an integrated "predict-and-
optimize" (IPO) scheme for DTP. Our IPO is a variant of the "smart predict-then-optimize"
(Elmachtoub & Grigas, 2022), which involves a prediction model to predict the passenger demand
of the next day according to the forecast contextual information and a decision model to optimize
a train timetable given the predicted passenger demand. The overall aim of IPO is to minimize
the expected waiting time of all passengers. To solve the problem, we transform the model into a
bi-level programming model and further into a large-scale single-level MILP. Solving the MILP is
traceable with commercial solvers but may take a very long computational time. So we propose
a column-and-row generation decomposition scheme that iteratively solves small-scale problems.
We test our approach on the real-world data of Beijing metro and we compare our approach with
traditional stochastic programming approaches, involving sample-average-approximation (SAA)
and robust optimization (RO), etc.

2 Problem Description

Our study considers a typical urban rail system consisting of a set of stations, denoted by
S ={1,2,---,|S|}, with one or multiple depots. The rail company operates a fleet of physical
trains (or rolling stock resources), denoted by K, with each train having a passenger loading
capacity of C.

A train schedule is described by a sequence of actions over the planning horizon (e.g., 5:00
am to 12:00 am), defining the frequency and explicit arrival/departure times of trains at each
station (Schettini et al., 2022). According to the schedule for each operational day, the trains
depart from the depot, dwell at the stations 1,--- ,|S| for passengers to board and alight, and
finally return to the depot. This entire process is referred to as a cycle. After completing a cycle
and returning to the depot, each train can be dispatched for a new cycle (Van Lieshout, 2021).

In our study, we collected a large set of historical data samples, denoted by:
D:{(Xl’yl)"" 7(Xivyi)7"' 7(XN7YN)} (1)

Each tuple (X*,Y") represents the collected data from the i-th day, where X’ = {z{, 25, - x}}
denotes the contextual information matrix (i.e., features), which includes the date (weekday,
weekend, or holiday), weather, and hourly temperature; Y = {yh, yi’Q, e ,yfs|’|T‘} represents
the passenger demand throughout the operational period (e.g., 5:00 am to 23:00 pm). Here,
the operational period is discretized into a set of equal intervals T' = {1,2,--- ,|T'|}, with each
interval lasting, for instance, 10 seconds. Thus, for any t € T and s € S, yé’t represents the
number of arriving passengers at station s during time t¢.

Different from the existing studies, which rely solely on historical passenger demand data for
DTP, our IPO approach aims to optimize the train timetable for the next operational day by
leveraging forecasted contextual information (e.g., weather, temperature). The objective is to
improve service quality by aligning with actual demand distribution and minimizing the expected
passenger waiting time.

TRISTAN XII Symposium Original abstract submittal



3 Methodology

Our TPO approach involves a decision model that generates an optimal train timetable, based
on predicted demand from a prediction model that uses contextual feature information as input.

3.1 Decision model

Given the predicted demand Y = {y,; > O|s € S,t € T}, the decision model for DTP is
formulated as follows:

F) —min Y3 (z or m)
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2z €{0,1},Vt € T,Bs, >0Vt €T, s€ S

In the above formulation, we define binary decision variables z; € {0, 1} to represent the departure
of a train at time ¢, where z; = 1 indicates a train departure; continuous variables 3, ; to represent
the volume of boarding passengers at station s at time t. The objective function f (Y) corresponds
to the waiting time of passengers, where Ty = {7 € T|r < t}. The first constraint ensures the
safety headway between trains, where TtH ={r €T |t <7 <t+tsate}, and tg,fe is the minimum
headway time required to maintain safe train following distances. The second constraint restricts
the rolling stock circulations, where th ={reT|t<71<t+tc}, with to representing the
circulation time. The third and fourth constraints deal with passenger alighting and boarding
processes, which will be further detailed in the conference.

3.2 Decision with prediction

Model (2) relies on the predicted passenger demand Y. To achieve this, we adopt a MIMO
linear regression model that predicts the demand using contextual information X of the next
day. Specifically, let A € R¥*T represent the matrix of coefficients and @ € R™7 represent the
vector of bias, both of which are to be determined.

Traditionally, A and @ are trained directly using historical data D, with the objective of
minimizing prediction error (via the least square method). Once the optimal matrix A and
vector @ are determined, we can use Yy =ATX 40 to generate the train timetable by solving
model (2). This approach constitutes a predict then optimize (PTO) method.

The key idea is that while PTO minimizes prediction error, it does not necessarily mini-
mize decision error, i.e., the expected passenger waiting time. Therefore, our IPO formulation
integrates model (2) with the prediction model, resulting in a bi-level optimization formulation:

N
(BIPO) min > [F(ATX' +6) — f(¥)|

’ i=1 3
AGRNXT,0€R1XT ()
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The objective function of (3) minimizes the difference between the passenger waiting time based
on the predicted demand (i.e., f(AT X" 4 0)) and the waiting time based on realized demand
(i.e., f(Y?)) over the historical data set D.

Model (3) is a typical bi-level optimization problem, which can be challenging to solve. We
reformulate it into a large-scale MILP and develop an iterative method based on column-and-row
generation to efficiently solve it. Further details will be presented at the conference.

4 Results

We conduct numerical experiments using field data from the Beijing Metro Batong Line, collected
between August 1 and August 30, 2023 (i.e., N = 30). We also construct a total of 20 instances
as the testing dataset, with varying values of D, T, and K. We compare our IPO approach with
four benchmarks: 1) AVE, which uses average passenger demand to optimize DTP, a common
method in both the literature Yin et al. (2017) and practice; 2) SAA, which optimizes DTP
under stochastic scenarios generated from historical data D; 3) RO, which also adopts discrete
scenarios but minimizes under the worst-case scenario; and 4) PTO, as introduced earlier.

Table 1 — Performance comparison on the testing data set

Parameters Methods (x107)
Instances |D| |T| |K| AVE SAA RO PTO IPO
I-1 5 300 18 263 251 268 232 225
I-2 7 300 18 256 2.53 2.62 247 232
I-3 10 300 18 2.82 264 2.65 268 2.52
I-4 12 200 18 3.52 3.33 3.55 323 312
I-5 10 200 18 3.10 3.11 3.21 3.11 2.96
Average - - - 293 282 294 2.76 2.63

Table 1 presents (a subset of) the performance comparison between our IPO and the four
benchmarks. Both PTO and IPO significantly outperform the other three methods, highlighting
the importance of incorporating contextual information into DTP. More importantly, our IPO
further reduces passenger waiting time by approximately 5% compared to PTO. Additional
results and analysis will be presented at the conference.
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