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1 INTRODUCTION

Current state-of-the-art methods for generating synthetic populations typically create data at a
single point in time, producing a synthetic snapshot. As demographic changes occur in the real
population, synthetic snapshots quickly become outdated, requiring a complete regeneration to
update which is both repetitive and computationally expensive. Additionally, generating snap-
shots independently leads to inconsistencies over time, which limits their usefulness for long-term
forecasting. To address this issue, methods for evolving synthetic snapshots have been introduced
(Lomax et al., 2022, Prédhumeau & Manley, 2023). However, they often work at an aggregated
level, focusing on changes in marginal distributions rather than capturing detailed individual-
level dynamics. Also, they simulate only common demographic events such as births, deaths, and
migrations, which may result in non-representative synthetic data during long-term forecasting
that might involve unexpected events (e.g., COVID-19) (Kukic & Bierlaire, 2024). Limited data
on the same individuals over time (i.e., longitudinal data) limit models that rely on individual-
level insights (e.g., activity-based models), leading to overemphasizing past behaviors and focus
on a single point in time (Zhang et al., 2021).

To address these problems, we propose a novel method that utilizes the Gibbs sampler to
generate longitudinal synthetic individuals, enabling us to follow the same synthetic individu-
als over time. Our method generates a universal set of time-independent synthetic variables
(X0, X1, · · · , Xn) only once, from which we can then derive a set of time-dependent synthetic
variables (Ŷ t

0 , Ŷ
t
1 , · · · , Ŷ t

n ) at any point in time t. That way our model: (i) ensures internal
consistency across time by using a single set of universal variables, avoiding discrepancies seen in
independently generated snapshots, (ii) offers more efficient derivation of time-specific data com-
pared to full data regeneration, (iii) provides disaggregated information on the same individuals
over time, which offers richer insights compared to having only aggregated sociodemographic
marginals, and (iv) enables flexibility, as changes to the universal dataset are reflected in all
derived datasets, allowing for rapid testing of scenarios like natural disasters or pandemics. In
the case study, we demonstrate the generation of an initial universal synthetic dataset, either
using assumed priors or conditionals calibrated using Swiss Mobility and Transport Microcensus
(MTMC) data (Swiss Federal Office of Statistics, 2012;2018;2023). Using a universal dataset, we
simulate the effects of a pandemic that affects older individuals, ensuring the impact is reflected
across all derived datasets with a single simulation.
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2 METHODOLOGY

We adopt a model governed by a set of L time-independent universal variables Xℓ, where
ℓ = 0, · · · , L − 1. This model enables the deterministic reconstruction of individuals’ infor-
mation described by a set of K variables Ŷ t

k , where k = 0, . . . ,K − 1, at each time instance
t ∈ N , with time discretized into one-year intervals. We model the following universal variables
that describe characteristics of individuals: X0 denoting the year of birth; X1 denoting the lifes-
pan; X2 denoting the sex that is assumed invariant over time; X3 represents the age at which a
driving license is acquired, which is assumed to be irrevocable once obtained. We generate them
either using assumed priors or by integrating the real data as shown in Sections 2.1, 2.2 and 2.3.

While the method can accommodate a wider range of variables, we demonstrate its applica-
bility using the following set of descriptors: Ŷ t

0 , a binary variable that indicates if the individual
is alive at time t; Ŷ t

1 represents the individual’s age at time t if they are alive, or their age at death
if they have passed away; Ŷ t

2 , the individual’s sex; and Ŷ t
3 , a binary variable indicating whether

the individual holds a driving license. These variables are derived from the previously generated
universal variables Xℓ, ℓ = 0, . . . , 3 as follows: an individual is alive, Ŷ t

0 = 1, if X0 ≤ t < X0+X1,
otherwise Ŷ t

0 = 0; the age Ŷ t
1 is calculated as Ŷ t

1 = Ŷ t
0 (t−X0); sex Ŷ t

2 is given by Ŷ t
2 = X2; and

driving license ownership Ŷ t
3 is set to Ŷ t

3 = 1 if Ŷ t
0 = 1 and t ≥ X0 +X3, otherwise Ŷ t

3 = 0.

2.1 Prior distributions

For each universal variable Xℓ, we can assume a prior distribution that enables our method to
work, regardless of the availability of real sample data. We adopt that X0 is uniformly distributed
over the time horizon of interest, X1 follows an exponential or Weibull distribution, as typical in
survival analysis, X2 is a Bernoulli random variable, and X3−18 follows a lognormal distribution.

2.2 Data integration: generating year of birth X0 and lifespan X1

In this section, we discuss how to refine the priors and generate distributions of X0 and X1 using
Gibbs sampling and information from the data. Assume that we have access to the distributions
of life status Y0 and age Y1 at two different time points s and t. From this data, we can also
derive conditionals Y s

1 |Y s
0 and Y t

1 |Y t
0 . The general idea of Gibbs sampling is to draw from the

joint distribution: X0, X1, Y
s
0 , Y

s
1 , Y

t
0 , Y

t
1 . Since the full joint distribution is not available, we de-

compose these draws into two sets of conditionals from which we draw: (i) Y s
0 , Y

t
0 , Y

s
1 , Y

t
1 |X0, X1,

which is deterministic, and (ii) X0, X1|Y s
0 , Y

s
1 , Y

t
0 , Y

t
1 , which we sample using Bayes’ theorem.

The posterior distribution is updated iteratively, proportional to the likelihood times the prior
distributions. Assuming that the two datasets are conditionally independent, we obtain:

Pr(X0, X1|Y s
0 , Y

s
1 , Y

t
0 , Y

t
1 ) ∝ Pr(Y s

0 , Y
s
1 |X0, X1) Pr(Y

t
0 , Y

t
1 |X0, X1) Pr(X0) Pr(X1),

where Pr(X0) and Pr(X1) are the prior distributions provided in Section 2.1. We approximate:

Pr(Y s
0 , Y

s
1 |X0, X1) = Pr(Y s

1 |Y s
0 , X0, X1) Pr(Y

s
0 |X0, X1) ≈ Pr(Y s

1 |Y s
0 ) Pr(Y

s
0 |X0, X1),

where Pr(Y s
1 |Y s

0 ) is given by the data, and Pr(Y s
0 |X0, X1) = 1 if X0 ≤ s < X0+X1, otherwise is 0.

Note that we simplify Pr(Y s
1 |Y s

0 , X0, X1) to Pr(Y s
1 |Y s

0 ) since knowing the fact that the individ-
ual is alive at year s is sufficient to draw the age, irrespectively of X0 and X1. The quantity
Pr(Y t

0 , Y
t
1 |X0, X1) is defined in a similar way. The draws from X0 and X1 are generated using

Metropolis-Hastings algorithm.

2.3 Data integration: generating sex X2 and driving licence age X3

Assume now that we have access to the sex distribution Y2 at two different points in time s and
t, i.e., we have access to the distributions of Y s

2 |Y s
0 and Y t

2 |Y t
0 . To generate X2, we draw from:

X2, Y
s
0 , Y

s
2 , Y

t
0 , Y

t
2 ,
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that can be decomposed in the same way as described in Section 2.2. Similarly, by assuming that
we have access to the driving license ownership distribution Y3 in two moments in time s and t,
we also have access to the distributions of (Y s

1 |Y s
0 , Y s

3 ), (Y
t
1 |Y t

0 , Y
t
3 ), (Y

s
3 |Y s

0 , Y
s
1 ), and (Y t

3 |Y t
0 , Y

t
1 ),

which allows us to generate age of obtaining a driving license X3. As the driver’s license ownership
reveals something about the age, we want to draw from: X0, X1, X3, Y

s
0 , Y

s
1 , Y

s
3 , Y

t
0 , Y

t
1 , Y

t
3 . To

decompose those draws we use the same procedure as before.

3 Results

In this section, we aim to: (i) demonstrate the feasibility of generating a universal dataset
with time-independent variables that enable the derivation of consistent time-specific synthetic
populations, (ii) demonstrate how unexpected events can be applied to the universal dataset and
reflected in all derived datasets, and (iii) test the impact of hypothetical scenarios in both short-
and long-term simulations. In Figure 1, we illustrate the steps of the performed case study.

Synthetic Universal Data
Xℓ

Birth Lifespan Sex Age
Driving

1986 50 M 18
2005 50 F 18
2005 11 M -1
1968 20 F 18

Real data
2010

Real data
2020

Pandemic
Update the first person
that is affected in 2015:

(1986, 29, M, 18)

Step 1:
Generate

Step 2:
Simulate

Synthetic data
2015

Alive Age Sex Driving
licence

0 29 M 1
1 10 F 0
1 10 M 0
0 20 F 1

Synthetic data
2010

Alive Age Sex Driving
licence

1 24 M 1
1 5 F 0
1 5 M 0
0 20 F 1

Synthetic data
2020

Alive Age Sex Driving
licence

0 29 M 1
1 15 F 0
0 11 M 0
0 20 F 1

Step 3: Derive

Figure 1 – The framework for generating synthetic longitudinal data

First, we generate the universal dataset using the conditionals defined in Sections 2.2 and 2.3.
To estimate probabilities, we use MTMC real population data from 2010 and 2020. Note that
these datasets cover the same population but do not track the same individuals. Figure 2
shows that refining the assumed priors with real data enables closer alignment with observed
distributions. For instance, no individuals born in 1961 are observed to live less than 50 years
or more than 100, based on data from 2010 and 2020. Real data define the bounds for lifespan,
whereas using priors results in having more variability, with values beyond realistic lifespans.
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Figure 2 – Conditional distributions of lifespan given birth year from synthetic universal datasets
generated from priors (left) or data (right)

After generating the universal dataset, we can derive synthetic datasets for any time t as
shown in Section 2, enabling tracking of individuals over time. The key advantage is that
the universal dataset is generated only once, and any change to it is reflected in all derived
datasets. To illustrate this, we simulate a hypothetical pandemic scenario using the universal
dataset as a baseline. Figure 3 shows the normal and disaster scenarios. In the normal case,
we derive synthetic samples from the universal dataset for 2010 and 2020 that reveal the age
distribution shift, with new individuals born between 2010 and 2020 and a small percentage
passing away. Then, we simulate the pandemic in 2015 that impacted older people by randomly
picking individuals from the universal dataset considered elderly by 2015 and shortening their
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lifespan. Using this updated universal dataset, we derive new synthetic data. In the disaster
scenario, the sample from 2010 remains the same, while more elderly people died by 2020.
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Figure 3 – Simulation of the normal (left) and hypothetical disaster (right) scenarios

In Table 1 we show the death percentage at moments t− s and t+ s, where t is the moment
of the disaster and s is the time step. We calculate the death rate for both scenarios as the
difference between the death percentage at t+ s and t− s, divided by the time step s. Since no
pandemic has occurred before t, the death percentage at t − s is the same for both scenarios.
The disaster scenario shortens the lifespan distribution (X1) for affected individuals, leading to
an increase in deaths. The disaster effect is most pronounced for smaller s (e.g., s = 5), where
the earlier end of lifespans causes a sharp rise in the death rate. For larger steps, the natural
rise in deaths obscures short-term effects, making the disaster harder to detect.

Table 1 – Comparison of cumulative death percentages and death rates for t = 2015 for different
time steps in normal and disaster scenarios

Time Step
s

Death % at
t− s

Death % at
t+ s Normal

Death % at
t+ s Disaster

Death Rate
Normal

Death Rate
Disaster

Rate
Difference

5 0.17 1.02 4.86 0.17 0.94 0.77
10 0.12 8.83 11.91 0.87 1.18 0.31
15 0.10 17.50 19.92 1.16 1.32 0.16
20 0.07 26.66 28.63 1.33 1.43 0.10
25 0.07 37.07 38.47 1.48 1.54 0.06
30 0.05 46.66 47.57 1.55 1.58 0.03
35 0.05 56.67 56.67 1.62 1.62 0.00

4 Discussion

This paper introduces a model that generates synthetic universal variables, allowing the deriva-
tion of synthetic populations at any time point without recalibration while capturing individual-
level changes. We show its capability to provide longitudinal insights and simulate both short-
and long-term impacts of hypothetical scenarios, such as pandemics. The model is both efficient
and flexible, as it ensures consistency over time and enables rapid scenario testing (e.g., war,
hazards, etc.), making it valuable for analyzing trends when real longitudinal data is unavailable.
In the future, the model should accommodate a broader range of variables and potentially be
expanded from the individual to the household level.
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