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1 INTRODUCTION

Routing problems are widely studied in the literature and many methods exist to minimize the
total travel costs. But besides cost minimization, the question of how to allocate these costs to
the di�erent involved customers arises. Recently, this became even more relevant in the context
of CO2-emissions since companies want and sometimes even need to report emissions in their
sustainability reports.

In this context, one of the most used methods is the Shapley Value since it ful�lls the major
fairness criteria. However, the major disadvantage of the Shapley Value is its computational
complexity since it requires the calculation of the costs of all sub coalitions of customers. Thus, it
can only be calculated for very small problem sizes in reasonable time, especially if the considered
optimization problem is NP-hard, as it is for the vehicle routing problem.

Therefore, the literature suggests also several approximation methods, both general compu-
tational expensive approximation schemes (Touati et al. , 2021) and problem speci�c methods
(Levinger et al. , 2021). However, the quality of these approaches di�ers and the solution times
might still be too slow to be used in practice if real-time or fast calculations are necessary.

To overcome these drawbacks, we introduce a general machine learning-based approximation
algorithm that can be trained o�ine to e�ciently calculate Shapley Values afterwards. We test its
performance against state-of-the-art approximation methods for the traveling salesman problem
(TSP) and the capacitated vehicle routing problem (CVRP). Further, the generalizability of our
methodology is demonstrated on a bin packing problem. Finally, we show how our approach can
scale e�ciently to even large instances by using biased (easier computable) labels.

2 PROBLEM SETTING

We consider a TSP with a set of customers N and an optimal tour with total costs C(N ). Then,
the goal is to �nd the cost allocation ϕn for each customer n ∈ N . Following the seminal work
of Shapley (1953), such a cost allocation is de�ned as

ϕSV
n =

∑
S⊂N :n∈S

(|S| − 1)!(|N | − |S|)!
|N |!

[C(S)− C(S − {n})] (1)

where C(S) de�nes the costs of each subcoalition S ⊆ N . Due to the high number of optimal
costs for each subcoalition that need to be determined, the calculation of the Shapley Values
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becomes fast intractable if the number of customers increases. Note that we can de�ne the
Shapley Value in a similar way for the capacitated vehicle routing problem. But in this abstract,
we focus on the TSP and only show some results for the CVRP.

3 METHODOLOGY

We introduce a Machine Learning-based Shapley Value Approximator (MLSVA) that uses a su-
pervised machine learning approach to predict Shapley Values for unseen instances and customers
after learning from true Shapley Values and in�uencial features.

We consider a set of instances (e.g., TSP or CVRP) T all and the set of customers N (t) in
instance t with total routing cost C(N (t)). For each customer n, ϕ̂ML

n de�nes the cost allocation
prediction of our machine learning model and ϕ̂n the �nal approximation of the Shapley Value.
Using, this notation, we can de�ne our general methodology in Algorithm 1.

First, we generate a set of instances T all. Then, we determine for each instance t the char-
acteristic function v(N (t)) in order to label each customer observation n with the real Shapley
Value ϕSV

n and prepare the features f(n) that in�uence the Shapley Value (lines 2 to 8). Here, we
use instance- and customer-speci�c features that characterize the routing speci�c structure. Such
features include distance to the depot, distance to the gravity center, x-y-coordinates, number
of clusters, size of clusters, marginal cost of a customer, for example. For the CVRP, further
capacity related features are considered.

Then, we split the set of instances into the set of training instances T train and the set of test
instances T test (line 9). In the training, we use the Shapley Values as labels (line 10) to train
the selected supervised machine learning model on the training instances (line 11) based on the
features and labels. Then, we use the machine learning model to generate predicted Shapley
Values ϕ̂ML

n for each observation (lines 12 to 16) and scale them for each instance so that the
sum of the approximated Shapley Values corresponds to the total routing costs for that instance.
These scaled Shapley Values result in the �nal approximations ϕ̂n (lines 17 to 21). This scaling
is necessary, since the sum of the approximations for all customers must match the total routing
costs in an instance.

Finally, we evaluate the performance of the method exclusively on the test data T test. Once
the machine learning models are trained, our approximation approach can generate approxima-
tions rapidly without high computational e�ort.

Algorithm 1 MLSVA

1: Generate set of instances T all

2: for t ∈ T all do

3: v(N (t))← determineCharacteristicFunction(N (t))
4: for n ∈ N (t) do
5: ϕSV

n ← computeShapley(n, v(N (t)))
6: f(n)← prepareFeatures(n, t)
7: end for

8: end for

9: Separate T all into T train and T test

10: Use ϕSV
n as label ∀n ∈ N (t), t ∈ T train

11: trainMlModels(f(n), ϕSV
n ∀n ∈ N (t), t ∈ T train)

12: for t ∈ T test do

13: for n ∈ N (t) do
14: ϕ̂ML

n ← predictShapley(f(n), ϕSV
n )

15: end for

16: end for

17: for t ∈ T test do

18: for n ∈ N (t) do
19: ϕ̂n ← scalePrediction(ϕ̂ML

n , C(N (t)))
20: end for

21: end for
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4 RESULTS

4.1 Numerical setup

Due to the computational e�ort and similar to other works (e.g., Levinger et al. , 2021), we
measure the performance on instances with up to 15 nodes. In total, we create 5000 instances
for each size (7 to 15 nodes for the TSP and 7 to 13 nodes for the CVRP). All customer locations
and the depot are set randomly on a grid of size 100 x 100. For the CVRP, we generate random
demand between 1 and 5 and a random vehicle capacity between 10 and 18 per instance.

We assume a train/test data split of 80/20 to evaluate and benchmark our machine learning
framework against other methods. The optimal costs of the TSPs and VRPs are calculated using
GUROBI 9.7 and all machine learning models are conducted in Python 3.12. We use a Neural
Network, k-nearest neighbor, random forest, and XGBoost as machine learning models and
perform for all models a hyperparameter tuning separately for TSP and VRP. All experiments
are carried out on an AMD Ryzen 9 5950X 16-Core Processor, 3.40 GHz with a 128 Gb RAM.

4.2 Evaluation metrics and benchmarks

We use the following evaluation metrics to evaluate our approximations for Shapley values.

� MAPE: The mean absolute percentage error from the true Shapley value.

1

|N |
∑
n∈N

|ϕ̂n − ϕSV
n |

ϕSV
n

(2)

� MMAXPE: The mean maximum percentage error from the true Shapley value

1

|T |
∑
t∈T

max
n∈N (t)

|ϕ̂n − ϕSV
n |

ϕSV
n

(3)

where T is the set of routing problem instances and N (t) represents the customers in
instance t ∈ T . The latter is particularly important for evaluating the worst deviation of
approximations from the real Shapley Value for each instance.

We use the current state-of-the-art method SHAPO for the TSP (Levinger et al. , 2021) and
use two simple approximation methods as benchmark approaches. For the latter, we use the
depot distance and the reroute margin, which can be calculated as follows:

ϕ̂Depot
n = C(N ) · d0n∑

i∈N
d0i

(4)

ϕ̂Reroute
n = C(N ) · C(N )− C(N \ {n})∑

i∈N
C(N )− C(N \ {i})

(5)

4.3 Performance

Table 1 shows the performance for the TSP. We report the results for the neural network (NN),
the random forest (RF), the XGBoost (XGB), and the benchmarks. Note that, we do not
report the results the k-nearest neighbor because of space limitations in the abstract and the
signi�cantly worse performance (which can also be seen in the CVRP results). In a similar way,
Table 2 reports the results for the CVRP.

The results show that the neural network outperforms all other machine learning models.
Moreover, for the TSP, our MLSVA has only an average approximation error of 2.4% compared
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MAPE [%] MMAXPE [%]

|N | MLSVA Benchmarks MLSVA Benchmarks

NN RF XGB SHAPO Depot Reroute NN RF XGB SHAPO Depot Reroute
7 1.61 5.87 3.60 1.22 26.40 60.09 4.09 14.35 9.70 3.08 52.83 113.93
8 1.66 6.05 3.65 1.79 27.65 62.29 4.52 16.29 10.18 4.96 56.17 121.26
9 1.85 6.60 3.73 2.30 28.58 64.72 5.24 19.36 11.34 6.73 58.45 131.19
10 2.02 6.59 3.89 2.84 28.60 66.30 5.92 20.21 12.23 8.79 59.99 144.67
11 2.34 6.72 4.21 3.42 29.21 67.88 7.44 21.26 15.19 10.84 61.47 151.87
12 2.63 6.84 4.34 4.00 29.30 68.59 8.67 22.45 14.77 13.34 62.68 161.00
13 2.94 7.09 4.56 4.46 29.34 69.69 10.59 24.76 17.19 15.51 64.01 171.32
14 3.15 7.38 4.97 5.02 30.10 68.51 10.86 26.97 19.74 17.75 65.99 168.88
15 3.41 7.65 5.07 5.56 29.98 69.44 11.99 28.96 19.42 20.12 66.17 177.30
avg. 2.40 6.75 4.22 3.40 28.80 66.39 7.70 21.62 14.41 11.12 60.97 149.49

Table 1 � MAPE and MMAXPE [%] for MLSVA (TSP)

MAPE [%] MMAXPE [%]

|N | MLSVA Benchmarks MLSVA Benchmarks

NN RF XGBoost KNN Depot Reroute NN RF XGBoost KNN Depot Reroute
7 2.97 6.43 4.49 20.71 21.70 45.54 7.89 15.63 11.59 76.41 47.97 98.22
8 3.22 6.51 4.47 19.76 21.78 46.89 8.85 16.19 12.80 81.41 49.65 102.16
9 3.49 6.67 4.90 18.44 22.53 45.41 9.53 17.19 13.70 83.73 55.79 103.91
10 3.51 6.62 4.88 16.87 23.00 45.08 9.84 17.93 13.93 78.68 58.28 103.88
11 3.74 6.99 5.08 16.53 23.66 45.00 11.28 20.54 15.59 89.76 62.67 108.50
12 3.83 6.90 5.09 17.53 24.04 43.78 11.71 21.23 16.20 95.43 67.02 109.74
13 4.01 6.97 5.21 17.38 24.32 43.52 12.88 21.67 16.63 94.60 70.77 112.23
avg. 3.54 6.73 4.87 18.17 23.00 45.03 10.28 18.63 14.35 85.72 58.72 105.52

Table 2 � MAPE and MMAXPE [%] for MLSVA (CVRP)

to the state-of the art-method with 3.4%. Additionally, the maximum error is signi�cantly lower.
For the CVRP, where SHAPO cannot be applied, the di�erence is even larger and demonstrates
the bene�t MLSVA.

In further numerical test, we demonstrate that we can further use heuristic solutions for train-
ing our machine learning models without signi�cant loss in performance. Moreover, we can train
our model with small instances and still estimate the Shapley Values for large instances. These
extensions additionally highlight the advantage of our method since this allows to use MLSVA
for large instances without the necessity of training on larger instances, which is computationally
too expensive.

5 DISCUSSION

The results have shown that MLSVA outperforms state-of-the-art methods. Additionally, our
results allow to calculate Shapley Values in real-time after the model is trained. At the conference,
we will present more detailed results and the generalizability of our method which further shows
great performance on bin packing problem.
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