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1 Introduction
In many supply chain contexts shipments are transported that are small relative to the capacity
of the transporting vehicle. Given that the majority of transportation costs are incurred on a per-
vehicle basis these costs exhibit economies of scale. Namely, the cost per shipment transported
decreases as the number of shipments in a vehicle increases. Thus, in contexts where revenues
are earned on a per shipment basis, high vehicle utilization is critical to profitability. Examples
of such contexts include an eCommerce retailer fulfilling customer orders by transporting goods
through a distribution network and a third party transportation carrier that quotes prices on a
per-unit-of-vehicle capacity basis.

The primary strategy for achieving high vehicle utilization in these contexts is to route
shipments on paths through a network of terminals. Doing so facilitates synchronizing the
paths of shipments from different customers, with potentially different initial origins and final
destinations, to include the same terminal to terminal movements. Further synchronizing the
schedules of these shipment paths enables the consolidation of such shipments in the same vehicle
dispatch. Thus, one lever for reducing per-shipment transportation costs is to design and schedule
the paths of shipments to be synchronized in both space and time. However, when allocating
vehicle capacity to transport shipments there may be choices regarding the type of vehicle used,
with different vehicle having different capacities and costs. Thus, another lever for reducing per-
shipment transportation costs is to rightsize the capacity allocated to a transportation move.

This research focuses on a Mixed Integer Programming (MIP) methodology for planning the
operations of such carriers that leverages both cost-reduction levers. The methodology is based
on solving a variant of the Scheduled Service Network Design Problem (SSNDP) that we refer
to as the Scheduled Service Network Design Problem with Bin Packing and Heterogenous Fleet
(SSNDP-BPHF). The SSNDP has received extensive study in the transportation and logistics
literature (Crainic & Hewitt, 2021). Further, some research has considered variants in which the
fleet of vehicles available to transport shipments is heterogenous (Wang et al., 2019). However,
nearly all research focused on the SSNDP has modeled capacity in aggregate. Namely, it has
ignored the operational reality that individual shipments must be allocated to individual vehicles
and the shipments allocated to a vehicle must fit within that vehicle. Hewitt & Lehuédé (2023)
presents a new MIP formulation of the SSNDP that facilitates modeling such bin packing consid-
erations and illustrates that ignoring them can understimate transportation costs by up to 7.5%,
with the underestimate increasing in the number of shipments to be transported. However, that
formulation is enumerative in nature and has a potentially exponential number of variables. As

TRISTAN XII Symposium Original abstract submittal



2

Hewitt & Lehuédé (2023) does not present an algorithm for addressing that issue, only instances
with small numbers of commodities are considered.

This research includes multiple contributions related to the literature on freight transporta-
tion in general and the SSNDP in particular. Namely, it includes a MIP formulation of the
SSNDP that is both provably stronger than the one presented in Hewitt & Lehuédé (2023) and
easily adaptable to the SSNDP-BPHF. It also includes a Branch-and-price algorithm for solving
larger instances of that formulation than those considered in Hewitt & Lehuédé (2023).

2 Methodology
We begin with a mathematical definition of the operational context considered by the SSNDP-
BPHF. The terminal network is modeled as a directed network D = (N ,A) in which the set
N models consolidation terminals and the set A models physical transportation moves between
terminals. Regarding transportation, there is a set of vehicle types, G, such that the cost of
dispatching a vehicle of type g ∈ G on arc (i, j) ∈ A is fg

ij . Relatedly, a vehicle of type g has
capacity ugij on that arc. We do not model that vehicles of different types travel at different
speeds. Thus, the time needed for a vehicle to travel on arc (i, j) is given by τij .

There is a set of shipments K that require transportation. Associated with each shipment
k ∈ K is a terminal where it is to be picked up, ok, no earlier than the release date ek, and is
to be delivered, dk, no later than the due date lk. In addition, associated with shipment k is its
size qk, expressed in the same unit as vehicle capacity. Lastly, associated with commodity k is a
set of potential paths, Pk, on which the commodity can be routed from ok to dk. We let Pk(i, j)
denote the set of such paths that contain arc (i, j) ∈ A.

Classical formulations of the SSNDP rely on a time-expanded network to capture the schedul-
ing of commodity and vehicle dispatches on arcs. Knapsack-type linking constraints formulated
on arcs in that network ensure sufficient vehicle capacity, in aggregate, is allocated. It is well
known that such inequalities lead to notoriously weak linear programming realaxations. They
are also not amenable to modeling bin packing without the addition of additional variables.

Hewitt & Lehuédé (2023) propose formulating the SSNDP with consolidations, wherein a
consolidation ω ⊆ K for a given arc (i, j) indicates a set of commodities that dispatch at the
same time. Thus, one can compute and associate with consolidation ω a coefficient sω that dicates
the number of vehicles it requires. Further, one can then formulate the scheduling dimension
of the problem with continuous variables that model when a commodity dispatches on an arc,
obviating the need for a time-expanded network. Big-M constraints triggered by the values of
decision variables associated with consolidations ensure the commodities in a chosen consolidation
for a given arc dispatch at the same time. Such a formulation can be proven to have a stronger
linear relaxation than the classical formulation of the SSNDP based on a time-expanded network
and knapsack-type constraints. It also facilitates modeling bin packing considerations, as doing
so only requires appropriately computing the values sω.

We build off the concept of consolidations to propose a formulation of the SSNDP with a
linear relaxation that yields an even stronger bound. This formulation is based on the concept of
consolidation profiles, wherein a consolidation profile π = {ω1, . . . , ωnπ} for a given arc indicates
the complete set of consolidations chosen for that arc. Associated with profile π is a binary
indicator ϕk

π, k ∈ K of whether commodity k is contained in a consolidation in profile π as well
as another binary indicator σπ

kk′ , k, k
′ ∈ K of whether commoditites k, k′ are contained in the

same consolidation in profile π. The bin packing and heterogenous fleet aspects of the SSNDP-
BPHF are captured in the coefficient sgπ associated with consolidation profile π that indicates the
number of vehicles of each type, sgπ, g ∈ G it requires. We let Πij denote the set of consolidation
profiles for arc (i, j) ∈ A.

Given these mathematical constructs, we formulate the SSNDP with Bin Packing and Het-
erogenous Fleet (SSNDP-BPHF) with the following decision variables. We let the binary decision
variable vkp , k ∈ K, p ∈ Pk indicate whether path p ∈ Pk is chosen for commodity k. We let the
continuous decision variable γkij , k ∈ K, (i, j) ∈ A indicate the time at which commodity k dis-
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patches on arc (i, j) ∈ A. We let the binary decision variable yπij , π ∈ Πij , (i, j) ∈ A indicate
whether consolidation profile π is chosen for arc (i, j) ∈ A. Lastly, we let the integer variable
zgij , (i, j) ∈ A, g ∈ G indicate the number of vehicles of type g ∈ G that are needed on arc
(i, j) ∈ A. We are thus able to formulate the SSNDP-BPHF as follows.

minimize
∑
g∈G

∑
(i,j)∈A

fg
ijz

g
ij (1)

subject to ∑
p∈Pk

vkp = 1 ∀k ∈ K, (2)

∑
(ok,j)∈A

γkokj ≥ ek ∀k ∈ K, (3)

∑
(i,dk)∈A

(γkidk + τidk(
∑

p∈P (i,dk)k

vkp)) ≤ lk ∀k ∈ K, (4)

∑
(i,j)∈A

(γkij + τij(
∑

p∈P (i,j)k

vkp)) ≤
∑

(j,i)∈A
γkji ∀j ∈ N, k ∈ K (5)

∑
p∈Pk:(i,j)∈p

vkp =
∑

π∈Πij

ϕk
πy

π
ij ∀k ∈ K, (i, j) ∈ A, (6)

∑
π∈Πij

sgπy
π
ij ≤ zgij ∀(i, j) ∈ A, g ∈ G, (7)

γkij − γk
′

ij ≤ T (1−
∑

π∈Πij

σkk′
π yπij) ∀(i, j) ∈ A, k, k′ ∈ K (8)

∑
π∈Πij

yπij ≤ 1 ∀(i, j) ∈ A. (9)

The objective function (1) minimizes total transportation costs, considering all types of vehicles.
Constraints (2) ensure that each commodity is routed on a single path through the terminal
network while constraints (3) - (5) ensure that the dispatch times associated with arcs on that
path agree with the available and due dates of a commodity as well as travel times. Constraints
(6) ensure that a consolidation profile containing a commodity is chosen for each arc in the
path chosen for that commodity. Constraints (7) ensure sufficient vehicles are allocated given
the consolidation profile chosen for an arc while (8) ensure that two commodities that a chosen
consolidation profile indicate should dispatch at the same time do so. Finally, constraints (9)
ensure at most one consolidaton profile is chosen for each arc. Omitted are constraints defining
the decision variables and their domains.

Given the potentially large sizes of the sets of consolidation profiles, Πij , only small instances
of the above formulation can be instantiated and solved a priori in reasonable runtimes. Thus,
we propose solving larger instances of the formulation with a Branch-and-Price (Barnhart et al.,
1998) scheme. Due to space considerations, we only summarize the scheme. This scheme involves
solving the linear relaxation of a Restricted Master Problem (RMP) of the same form as the
formulation presented above, albeit formulated with subsets Πij ⊆ Πij of consolidation profiles
for each arc. Dual variables associated with the constraints in which a yπij variable participates
((6),(7),(8),(9)) are used to formulate a pricing problem to identify variables not present in Πij

that have negative reduced cost. That pricing problem takes the form of a heterogeneous bin
packing-type problem with a quadratic term in the objective due to constraints (8). To produce
optimal solutions to the integer program a branch-and-bound tree is searched with a process that
solves RMPs and pricing problems at nodes within the tree. Along with branching on the binary
variables vkp and integer variables zgij , the attributes σπ

kk′ are branched on in a manner analogous
to the Ryan & Foster branching rule (Ryan & Foster, 1981). We note further that embedded in
the scheme are multiple enhancements, including primal heuristics and valid inequalities.
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3 Results
To assess the computational efficiency of the proposed Branch-and-price scheme it was executed
on the instances used in Boland et al. (2017). We note that to the best of our knowledge the
SSNDP-BPHF has never been formulated and solved for these instances. As a benchmark, a
comparable Branch-and-price scheme was developed for the formulation presented in Hewitt &
Lehuédé (2023). As that formulation is not immediately amenable to heterogenous fleets, all
instances consisted of a homogenous fleet (i.e. |G| = 1). Both Branch-and-price schemes were
implemented in C++ using the Branch-and-price framework of the SCIP optimization solver
(Bestuzheva et al., 2021). In both schemes the pricing problem was solved as a Mixed Integer
Program by SCIP after linearizing the quadratic term in the objective using known techniques.
As another benchmark, we solved instances of the SSNDP-BPHF formulated on a time-expanded
network with SCIP. All experiments were run with a time limit of one hour and an optimality
tolerance of 1%.

We report in Table 1 two summary statistics regarding the performance of the two Branch-
and-price schemes, averaged over instances containing the same number of commodities. The
first (# Solved) reports on the number of instances solved to within a tolerance of 1% in the
allotted time limit of one hour. The second (Gap unsolved) reports the average optimality gap
averaged over the instances that scheme did not solve.

Table 1 – Results considering a homogenous fleet

Time-expanded network formulation Consolidation formulation Consolidation profile formulation
|K| # Solved Gap unsolved # Solved Gap unsolved # Solved Gap unsolved
40 89 85% 126 N/A 126 N/A
100 57 88% 100 2.03% 124 1.46%
200 0 174% 11 4.33% 19 2.26%
400 0 355% 0 19.84% 14 3.42%

Summary 158 176% 237 10.98% 283 2.75%

We see that applying a Branch-and-price scheme to the Consolidation profile-based formu-
lation enables the solution of the largest number of instances. For instances not solved, the
optimality gap is smaller. We also see the scheme applied to the Consolidation profile-based
formulation scales better with respect to the number of commodities present in an instance than
the analogous scheme applied to the Consolidation-based formulation.
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