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1 Introduction

The rise of e-commerce has transformed home deliveries, offering both attended and unattended
options. Attended home delivery (AHD) requires the recipient to be present at the time of
delivery, which is essential for high-value or perishable goods. In contrast, unattended deliveries
allow packages to be left securely without direct handoff.

Subscription-based models (SBMs), such as meal kit services and local produce subscriptions,
have gained popularity in e-commerce. These services rely on recurring, scheduled deliveries to
customers’ homes, making effective management and pricing of delivery time slots crucial. While
offering flexible time slot options increases customer convenience, it also introduces logistical
challenges. E-retailers must balance customer preferences with operational efficiency to maintain
profitability.

Managing time slot availability is critical, as customer choices directly influence delivery
routes, costs, and service quality (Nguyen et al., 2019, Klein et al., 2019). Understanding cus-
tomer preferences enables retailers to optimize time slot selection and pricing, ultimately im-
proving efficiency and customer satisfaction.

This research focuses on the time slot assortment problem in AHD within SBMs. We examine
how e-retailers decide which time slots to offer and how to price them while accounting for
customer preferences. To better capture heterogeneity in preferences than traditional models,
we use a Mixed Logit (ML) model. Given the computational challenges of integrating this model
into assortment optimization, we apply simulation-based methods (Pacheco Paneque et al., 2021)
to overcome these difficulties.

This study explores both tactical and operational decision-making. At the tactical level, we
optimize next-day delivery planning using a profit-maximizing Mixed-Integer Linear Program-
ming (MILP) model. At the operational level, we manage same-day deliveries through a Markov
Decision Process (MDP), enabling dynamic, real-time decision-making.

2 Modeling framework

2.1 Retailer Decision Model

In a subscription-based system, an online retailer must determine which delivery time slots
and discount rates to offer customers, aiming to maximize profit while considering customers’
uncertain preferences.
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Let C represent the set of customers, T the set of available time slots, and H the set of
possible discount rates, where each h € H satisfies 0 < h < 1.

The retailer creates an offer set I, formed by pairing each available time slot with each
discount rate, as well as an opt-out option ({0}) that allows customers to decline the offered
options. Mathematically, the set I is defined as:

I=Tx HuU{0}.

For any ¢ € I (excluding the opt-out option), we represent it as (¢;,h;) € T x H, where t; is
a time slot and h; is a discount rate. The discount is applied to a base fee f, representing the
original price before reductions.

The retailer’s decision regarding which options to offer is modeled using the binary decision
variable ~;,, where ~;, = 1 indicates that option i € I is offered to customer n € C.

2.2 Customer Choice Model

Once the retailer has determined the offer set, customers evaluate the available options. Each
customer n € C faces a set of alternatives I, each characterized by a time slot t; € T, a discount
rate h; € H, and an opt-out option. The probability that customer n chooses option ¢ € [
depends on the utility they derive from that option, compared to the others.

The utility u;, that customer n associates with option ¢ consists of two components: a
systematic component V;,, which captures observable factors such as time and price, and a
random error term &;,, which accounts for unobserved factors that affect the decision. This can
be written as:

Uin, = Vin + fz’m

where §;;, is assumed to follow an Extreme Value (EV) distribution, which leads to a logit-type
probability expression for choice.

The systematic component of the utility V;,, is modeled as a linear combination of factors that
influence customer decisions, such as time, price, and other relevant attributes of the alternatives.
Specifically, we assume:

V;n = ftime(ﬁgmev ti) + fprice(ﬁgricea hz) + fother(ﬁﬁthera Oi)v

where gtime  gPrice anq gother 1o parameters that capture the customer’s preferences for time,
price, and other factors, respectively, and o; denotes other attributes of alternative ¢. These
parameters reflect how customers value different aspects of the delivery options.

To reflect heterogeneity in customer preferences, we allow some of these sensitivity parameters
to vary across individuals. Specifically, we assume that some of the parameters are random,
meaning that they are drawn from distributions. This random variation captures the diversity
of preferences among customers, ensuring that the model can account for the fact that not all
customers value time, price, and other factors in the same way.

Given the presence of these random parameters, the probability that customer n selects
option 7 is no longer simply determined by the deterministic part of the utility V;,. Instead,
the probability reflects the distribution of these parameters across the customer population.
To account for this randomness, the ML model integrates over the distribution of the random
parameters 3, resulting in the following expression for the choice probability:

Vin(8)

Pin(-z) = Z]’ez ern(ﬁ)'f

(B8)ds,

where f(3) is the probability density function of the random parameters, and V;, () is the utility
for option ¢ given the values of the random parameters 3.
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2.3 Tactical-level time-slot management

Initially, we formulate the tactical-level problem as an MILP model. This model captures the
key aspects of time slot assignment, customer choice behavior as represented by the ML model,
and delivery routing decisions. The objective function maximizes expected profit while adhering
to operational constraints, such as vehicle capacities and time windows. While the MILP formu-
lation provides exact solutions for small-scale instances, it becomes computationally infeasible
for larger, real-world scenarios due to the problem’s combinatorial complexity and the intricacies
introduced by the ML model.

To tackle larger instances, we propose a two-stage metaheuristic approach. The first stage
uses a Route-First Time-Second constructive heuristic to efficiently generate initial feasible solu-
tions. This heuristic decomposes the problem into two sequential sub-problems: first, construct-
ing delivery routes based on spatial distribution and vehicle capacities; then assigning time slots
to customers along these routes, considering the ML model for customer choice behavior.

Building upon these initial solutions, the second stage employs a simulation-based Adaptive
Large Neighborhood Search (sALNS) for solution improvement. This approach combines the
advantages of ALNS with Monte Carlo simulation to manage the stochastic nature of customer
behavior inherent in the ML model. The sALNS applies various destroy and repair operators
to explore the solution space effectively. By incorporating simulation to evaluate the expected
revenue of solutions under varying customer choice scenarios, the method provides a robust
assessment of solution quality in the face of stochastic customer behavior. This two-stage meta-
heuristic approach enables us to handle large-scale instances while balancing solution quality and
computational efficiency.

To assess the effectiveness of our approach, we conducted numerical experiments on a syn-
thetic dataset, evaluating how well the model optimizes slot assortment while accounting for
diverse customer preferences. The results confirm that our SALNS heuristic is particularly well-
suited for medium- to large-scale instances. A performance comparison between Gurobi and
SsALNS (see Table la) demonstrates that while Gurobi often struggles with computational lim-
its, SALNS consistently provides high-quality solutions within reasonable time constraints.

Furthermore, Table 1b highlights the advantages of incorporating the ML model over the sim-
pler Multinomial Logit (MNL) model. Our findings indicate that tactical time slot management
based on an ML-based choice model, which accounts for heterogeneous customer preferences,
consistently performs at least as well as, and often outperforms, tactical time slot management
under the MNL assumption, which assumes homogeneous preferences. These advantages are
particularly evident in customer populations with high preference heterogeneity. To obtain these
results, we solved several instances using the ML- and MNL-based tactical time slot management
models, covering various customer distributions and market settings. Each instance was first op-
timized under its respective choice model. To assess the actual performance of these solutions,
we then re-evaluated each optimized solution using a new set of 100 independently generated sce-
narios. This re-evaluation process allowed us to compare the realized profitability of both models
under identical conditions. A series of paired t-tests were conducted on these re-evaluated profit
values, confirming that the ML-based model consistently performed at least as well as or better
than the MNL-based model in terms of profitability. Even in cases where statistical significance
was not reached, the ML-based approach consistently led to higher profitability.

2.4 Operational-level time-slot management

At the operational level, we model a same-day delivery system where the booking and service
periods overlap, capturing the dynamic nature of customer arrivals and delivery planning through
an MDP. Upon entering the system, the basket value and location of each customer are known,
providing key information for delivery planning.

In our MDP, the state S; € S at time ¢ is defined as the combination of all customers currently
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(a) Performance of sSALNS compared to Gurobi, ferent geographical settings

*43200s 1is the time limit.

in the system, potential future customers, and planned routes. The boundary condition is set as
St41 = 0, marking the end of the planning horizon. The probability of customer n arriving at
time ¢ is represented by A, (t). To capture the presence or absence of a request, we introduce the
variables ¢! and ¢?, respectively.

When a customer arrives and submits a request, our model schedules the delivery using
available vehicles at the depot or already on a scheduled tour, accounting for the need to load
the customer’s demand and return to the depot. The action space of the MDP describes both the
time slots offered to the customer and how the routes are updated at each decision point. This
dynamic approach allows for real-time optimization of delivery schedules in response to incoming

orders. The decision-making process includes key financial components: r?(Z), the basket value
l
¢t
reflecting logistical rewards at time ¢ 4+ 1. These components balance immediate revenue from
orders with future operational costs.

To formulate the objective function of our MDP, we follow the Bellman equation approach,
which is well-established in the literature (Klein & Steinhardt, 2023). This enables us to maximize
total profit by accounting for both immediate rewards from customer orders and expected future

rewards from optimal decisions. The Bellman equation is given by:

of option 7 in the set of offered options Z; T‘Zd(t), the delivery fee for option 7 at time ¢; and r

V() = 3 dal) - max (Z Pl [ @)+ rie) + TQ’?HD Y

Tel \ 4
neC €L

Vi(Sy) = IjlgjiE [Tb(.A) + V;erl(StJrl)} ; (2)

where A is the action taken at time ¢, and the objective is to maximize expected rewards by
making the best decisions at each step.
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