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1 INTRODUCTION

With over a million passenger train trips during an average day, the Dutch railway network plays
a big role in the mobility system of the Netherlands. To operate these trips, the major railway
operator, Netherlands Railways (NS) is tasked with solving several complex planning problems,
including the planning of individual train units, or rolling stock. On the day of operation, dis-
ruptions that range from a missing rolling stock unit to a complete blockage of a railway track
can occur. As a result, rolling stock units may not be able to complete the remaining trips
that they are scheduled for. Unavailability of rolling stock influences passenger satisfaction, as
passengers possibly have to stand or even wait for the next train in case not enough seats are
available. Restoring the rolling stock schedule can be expensive, as it can lead to additional
carriage kilometers and additional shunting movements. It is therefore essential to have efficient
procedures regarding the rescheduling of rolling stock in case of disruptions.

The rescheduling of rolling stock is a well-researched topic in operations research. However,
many existing models and methods are only able to deal with isolated and well-defined disrup-
tions. Typically, it is assumed that there is one single disruption such as a partial or complete
blockage of railway tracks, of which the exact location and duration are known and given as input
for the models. In reality, disruption information becomes available dynamically as some time
is required for railway dispatchers to uncover the circumstances of the disruption. Furthermore,
the duration of a disruption can be uncertain, since it often depends on the time that is required
for repairing railway infrastructure or resolving system failures, which can take longer or shorter
than expected. Additionally, the precise location and severity of a disruption can change if the
disruption turns out to be different than expected.

In practice, rolling stock rescheduling is often performed myopically, by only considering the
affected train trips that take place within, e.g., the next half an hour. The schedule is then
gradually adjusted as the disruption progresses. A possible drawback of this approach is that
irreversible decisions can be made which are suitable for the initially expected disruption, but
may lead to unnecessary cancellations or decreased passenger satisfaction if the disruption infor-
mation changes. Some existing literature has looked at uncertainty in the disruption duration,
such as Nielsen et al. (2012) and Wagenaar et al. (2023). However, these papers only consider
situations where disruptions last longer than originally expected, whilst disruptions with shorter
disruption durations are also vulnerable to irreversible decisions. Furthermore, uncertainty in
the accuracy of the disruption information is not considered, as the disruption may be smaller or
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larger than initially projected. To the best of our knowledge, no previous research has focused
on these sources of uncertainty in the context of rolling stock rescheduling. In this paper, we
propose an iterative stochastic programming approach for real-time rolling stock rescheduling
under uncertainty in disruption information.

2 METHODOLOGY

2.1 Problem Setting

To describe the uncertainty that arises in rolling stock rescheduling in practice, we assume that
the disruption starts at time τ0. We define L0 as the set of trips which is affected by the current
diagnosis of the disruption. This set naturally depends on the duration of the disruption d0, as
a longer duration leads to more affected trips. Other aspects that can affect the set of affected
trips relate to the location and severity of the disruption. For example, it is possible that the
initial diagnosis of the disruption states that one track on a double-track section of the railway
network is unavailable, which means that most of the trips that utilize the functioning track can
still be operated. However, after a more detailed inspection, it may turn out that both tracks
are broken, thereby affecting more trips than initially expected.

Based on d0 and L0, an updated timetable T0 is created, in which the trips which are directly
affected by the disruption are canceled and short-turnings are created which connect train services
that reach stations adjacent to the disruption to train services going in the opposite direction.
We assume that the expected end time of the disruption, the set of affected trips and the
updated timetable all become available at the same time and we define the information update
as i0 := (τ0, d0, L0, T0). As time progresses, more information updates i1, . . . , in about the
disruption become available at times τ1 < τ2 < · · · < τn, of which τn denotes the time of the final
information update at which the disruption information is certain. This can happen when we
observe at time τn that the disruption is already over, or when sufficient information about the
disruption is available to determine the disruption measures and end time with certainty. It is
common that earlier information updates turn out to be incomplete or inaccurate descriptions of
the disruption. Hence, the expected end time of the disruption and the size of the set of affected
trips can both increase and decrease, as the disruption evolves and more accurate information
becomes available.

2.2 Iterative Two-Stage Stochastic Programming Approach

Our method relates to the works of Cacchiani et al. (2012) and Nielsen et al. (2012) and re-
volves around iteratively re-optimizing the rolling stock schedule whilst taking into account
different disruption scenarios. First, we define the timing with which the rolling stock schedule is
re-optimized. In principle, an updated rolling stock schedule should be created with each infor-
mation update. However, if the time between two subsequent information updates is big, a large
number of decisions will be made, which may be disadvantageous if the disruption information
changes. We therefore define a period p, which denotes how often the rolling stock schedule
should be updated in case no information update arises. Hence, if no new information has been
released for p time units after the start time of the disruption τ0, the rolling stock schedule is
updated at times τ0 + p, τ0 + 2p, . . . until the next information update arrives at time τ1. We
define the set of points in time at which the rolling stock schedule is updated as U . Note that
at update time u ∈ U , rolling stock that is assigned to trips which depart before time u is fixed.

To account for the uncertainty in the accuracy and completeness of the information updates,
we define a set of possible disruption scenarios Su for each update time u ∈ U . Each disruption
scenario s ∈ Su corresponds to a (slightly) different disruption. In particular, for each u ∈ U ,
the set of disruption scenarios contains one scenario which assumes that the disruption occurs
exactly as specified in the most recent information update. The remaining scenarios deviate by
containing shorter and longer disruption durations, as well as smaller and larger sets of affected
trips.
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To model the problem as a two-stage optimization problem (TSOP), we define a recovery
algorithm R which takes as input a rolling stock schedule without disruption x0, an update time
u and a disruption scenario s ∈ Su, and outputs a recovered schedule (y, xus ) = R(x0, u, s) ∈ F u

s ,
where F u

s denotes the feasible region of the considered disruption scenario. Here, y represents
the first-stage decisions that are made in the recovered schedule within the next p time units, and
xus represents the second-stage decisions of scenario s for the remainder of the day. To create a
schedule that can at least be used until the next update time, we enforce that the decisions which
are made within the next p time units are identical across all scenarios. We denote the vector of
second-stage decisions across all scenarios for update time u as xu = (xus1 , x

u
s2 , . . . , x

u
sn). Further-

more, we define recovery cost functions c(y, x0) and d(xu, x0) for the first-stage and second-stage
decisions, respectively. The TSOP that is solved at each update time u is then as follows:

TSOPu = min{c(y, x0) + d(xu, x0) | (y, xus ) = R(x0, u, s) ∈ F u
s ∀s ∈ Su}. (1)

In this paper, we define d(xu, x0) =
1
n

∑n
i=1 d(x

u
si , x0). Previous literature on railway optimiza-

tion under uncertainty has often chosen to minimize the worst-case deviation. However, in our
application, the worst-case scenario would always be the scenario with the longest disruption du-
ration and the largest set of affected and canceled trips, whilst this scenario is not necessarily most
likely to occur. Hence, we choose to take into account all disruption scenarios simultaneously,
thereby minimizing the average deviation in a stochastic programming approach. Algorithm 1
presents our iterative two-stage stochastic programming approach.

Algorithm 1: The iterative two-stage stochastic programming approach.
Initialization i← 0, j ← 0, ui ← τj , create scenarios Sui , initialize x0
while Disruption is not over do

Solve TSOPui (1)
if (ui + p < τj+1) then (ui+1 ← ui + p) else (ui+1 ← τj+1, j ← j + 1)
create scenarios Sui+1 , update x0, i← i+ 1

end

The approach starts at time u0 = τ0 and initializes the set of scenarios Su0 and the rolling
stock schedule x0. The TSOP is then solved iteratively while the disruption is not over. As
the duration and severity of the disruption are not known with certainty, we create a rolling
stock schedule that can at least be used until the next update time. The next update time
corresponds either to the time of the next information update, or, if no new information update
arrives for p time units, the current update time plus p. Hence, the rolling stock schedule should
be usable until at least ui + p. The set of disruption scenarios is then updated by removing the
scenarios in which the disruption ended before the current update time. Furthermore, depending
on the information that arrives at the next update time, new scenarios with shorter and/or
longer disruption durations and a smaller and/or larger set of affected trips may be added. Since
the disruption information becomes more certain and accurate as time passes, fewer scenarios
are included in each subsequent iteration. Finally, the rolling stock schedule x0 is updated by
creating a new rolling stock schedule without disruption from time ui+1 until the end of the day,
using the state of the rolling stock at time ui+1 as specified by TSOPui . The proposed approach
iteratively combines pieces of the created schedules into one working rolling stock schedule and
is therefore a heuristic problem decomposition.

2.3 Modeling and Solving the Two-Stage Optimization Problem

To formulate the rolling stock rescheduling problem, a deterministic model from the literature
can be used, which takes as input a timetable that has been updated to incorporate the disruption
measures and outputs a recovered rolling stock schedule. A general formulation of the TSOP at
update time u is then as follows:

min c(y, x0) +
1

n

n∑
i=1

d(xusi , x0) (2)
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s.t. Ay ≥ b (3)
y ∈ Z+ (4)
Au

sx
u
s + Āu

sy ≥ bus ∀s ∈ Su (5)
xus ∈ Z+ ∀s ∈ Su (6)

We define the feasible region of the first-stage rescheduling problem as F = {y | Ay ≥ b, y ∈ Z+}
and the feasible region of the second-stage rescheduling problem of scenario s at update time u
as F u

s = {(xus , y) | Au
sx

u
s + Āu

sy ≥ bus , x
u
s ∈ Z+, y ∈ Z+}. The TSOP can become difficult to solve

as the number of scenarios becomes large. Initially, we will solve the TSOP with a commercial
solver. In case this is computationally restrictive, we will propose other techniques for solving
the TSOP. Due to the block-diagonal structure of the formulation, a Benders Decomposition
approach in line with Cacchiani et al. (2012) seems fruitful, in which the first-stage problem
corresponds to the Benders master problem and subproblems are constructed for each disruption
scenario. Cuts are then derived based on the solutions to the subproblems, which are fed back
to the master problem, thereby iteratively guiding the master problem to an optimal solution.

3 RESULTS AND OUTLOOK

We consider instances for the Dutch railway network, provided by NS. All disruptions start at 8:00
on a Tuesday morning and have a variety of different durations, circumstances, and information
updates. In our instances, the railway operator has access to six subtypes of Intercity units, which
amount to 321 units in total. The timetable contains 9,056 trips which are operated with Intercity
units. Table 1 presents a comparison between a naive algorithm (NA), which periodically updates
the rolling stock schedule under the assumption that the disruption information is always correct,
and an all-knowing algorithm (AKA), which knows beforehand how the disruption will play out.
It is typical for rolling stock rescheduling models to assign very large penalties to additional
cancelations, i.e., canceled trips on top of the trips which are directly affected and canceled by
the disruption. Hence, for both approaches, we report the remaining recovery costs separately
from the number of additional cancelations. A notable gap can be observed between these
two approaches. We expect that our proposed approach will significantly improve upon the
naive approach and will output schedules which lie in between these two approaches. We will
benchmark our approach against the rolling horizon approach of Nielsen et al. (2012) and present
detailed computational results at the conference.

Table 1 – Results of the naive and all-knowing rolling stock rescheduling algorithms.

Instance 1 2 3 4

NA AKA NA AKA NA AKA NA AKA

Remaining recovery costs (thousands) 837 818 694 650 627 590 592 635
#Additional cancelations 0 0 0 0 2 0 4 0
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