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1 INTRODUCTION

Learning-based methods promise to simplify and accelerate the creation of new heuristics for
combinatorial optimization. However, despite recent advancements, learning-based methods of-
ten fail to surpass the state-of-the-art techniques from the operations research (OR) community.
For example, while some learning-based construction methods for the capacitated vehicle routing
problem (CVRP) have outperformed the LKH3 solver (Helsgaun, 2000), they still struggle to
compete with the state-of-the-art HGS solver (Vidal et al., 2012).

In this paper, we introduce a novel learning-based large neighborhood search (LNS) frame-
work that leverages a deep neural network (DNN) trained via reinforcement learning (RL) to
perform the destroy operation. While existing methods have integrated learned components
into the LNS or ruin-and-recreate frameworks (Shaw, 1998, Schrimpf et al., 2000), prior work
has primarily focused on learning the repair procedure (e.g., Chen & Tian (2019)) or identifying
promising parts of the solution for improvement (e.g., Li et al. (2021)). In contrast, our approach
is the first to directly learn the destroy procedure.

Our method iteratively alternates between destroy and repair phases as shown in Figure 1.
The destroy phase uses a DNN to sequentially select customers to remove from the current
solution, while the repair phase employs a simple, greedy insertion algorithm that reinserts the
removed customers at locally optimal positions. Notably, our approach is trained using RL,
enabling it to adapt to problem instances without requiring pre-existing solutions.
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Figure 1 — Large neighborhood search with a learned destroy operator.
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The strength of our approach lies in its hybrid nature: it combines the nuanced decision-
making capabilities of a DNN with the fast evaluation speed of handcrafted OR heuristics. The
DNN guides complex destroy operation, while the efficient greedy repair operator allows rapid
evaluation of insertion positions. By balancing a learned, strategic destroy procedure with a fast
repair heuristic, our method achieves state-of-the-art performance comparable to leading OR
approaches like SISRs (Christiaens & Vanden Berghe, 2020) and HGS. Furthermore, our method
is highly adaptable to new problem types.While minor adjustments to the repair operator may
be required in some cases, the DNN adapts to different problems and distributions on its own.

We evaluate our approach on several challenging problems, including the CVRP, the vehicle
routing problem with time windows (VRPTW), and the price-collecting vehicle routing problem
(PCVRP). Our method demonstrates substantial gains over existing learned construction tech-
niques and achieves slightly improved performance compared to the best OR methods. To the
best of our knowledge, this is the first learning-based approach to reach this level of performance.

2 METHODOLOGY

2.1 Intelligent Destroy Operator

To destroy a solution, we employ a neural network that sequentially selects customers to remove.
This process can be viewed as a sequence of interdependent decisions, where each choice impacts
the next. More formally, given a feasible solution s to a vehicle routing problem (VRP) instance
[ involving customers ci, ..., cy, a policy network 7y, parameterized by 0, selects M customers
for removal. At each step m € {1,..., M}, the network chooses an action a,, € {1,..., N},
determining which customer to remove. The selection is made according to the probability
distribution mg(ap, | I, S, a1.m—1), where aq.,,—1 represents the previously removed customers.
The policy network is based on a transformer architecture, comprising an encoder and a
decoder. The encoder generates embeddings for all nodes by incorporating both the problem
instance [ and the current solution s. These embeddings are then passed to the decoder, which
produces the output distribution over the remaining nodes at each of the M decision steps.
While our decoder architecture mostly follows that of earlier works, we propose novel encoder
components that are focused on learning capable internal representation of VRP solutions.

2.2 Fast Repair Operator

The greedy repair operator reinserts the customers removed by the policy, one by one, following
a given order. At each step, a customer is placed in the position with minimal insertion costs,
considering all feasible insertion points across the current tours. During this process, various
constraints are respected, such as vehicle capacity limits. If no feasible insertion can be found, a
new tour is created for the customer. The order in which customers are reinserted plays a critical
role in the overall solution quality. We explore two strategies: reinserting customers either in
the order dictated by the neural network or in random order. Allowing the neural network to
control the reinsertion order enables it to influence the repair process, potentially identifying
sorting rules that lead to improved solutions. Our repair operator is inspired by earlier large
neighborhood approaches (Christiaens & Vanden Berghe, 2020), but we intentionally keep it as
simple as possible. For example, unlike Christiaens & Vanden Berghe (2020), we do not rely on
handcrafted sorting rules, focusing instead on leveraging the neural network’s learned policies.

2.3 Training

The policy DNN learns a destroy strategy in a RL training loop. At each iteration, new problem
instances are generated dynamically. For each instance, an initial feasible solution is created and
subjected to cycles of destruction and repair. After each repair phase, a reward is computed
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Figure 2 — GPU-accelerated improvement step.

based on the cost reduction relative to the original solution. To promote exploration, rewards
are limited to be non-negative, encouraging the network to take risks. The rewards guide the
learning process via the REINFORCE algorithm, which calculates gradients based on policy
performance. Network weights are adjusted to increase the likelihood of selecting customers
whose removal and reinsertion result in improved solutions. Over time, this iterative process
enables the policy network to refine its ability to identify effective destroy strategies.

2.4 Search

The trained destroy policy can be integrated into any large neighborhood search framework.
However, to run efficiently, the neural network requires a GPU, and we have designed a novel
improvement step procedure that fully leverages the parallel computing capabilities of GPUs.

As illustrated in Figure 2, the GPU-optimized improvement step begins with an initial solu-
tion sg, which is passed to the policy DNN. The DNN generates K rollouts rollouts of the policy,
i.e., K sequences of M actions that specify the customers to be removed. By calculating these K
rollouts in parallel on the GPU, we maximize computational efficiency. After the rollout calcula-
tions, the rollouts are sequentially applied to generate new candidate solutions. For example, sg
is destroyed according to the actions from the first rollout, yielding an intermediate solution s,
which is then repaired into s;. An acceptance criterion determines whether sj, or sy should be
retained, resulting in s;. This process is repeated for K iterations, resulting in significant cost
reductions from the initial input sg to the final output sg.

3 RESULTS & DISCUSSION

We evaluate our method on the CVRP, the VRPTW, and the PCVRP, with 100, 500, and 1000
customers. For the CVRP, we benchmark our method against the state-of-the-art handcrafted
methods HGS (Vidal et al., 2012) and SISRs. For the VRPTW and PCVRP, we compare to
SISRs and the multi-variant VRP solver PyVRP (Wouda et al., 2024), which is based on the
HGS framework. In each case, we evaluate our approach on 100 test instances generated using
the instance generator from Queiroga et al. (2022). We perform a separate training run for each
problem type and instance size. During testing, our method runs on an Nvidia A100 GPU and
a single CPU core, while all baseline methods use only a single CPU core.

Figure 3 illustrates the costs of each approach over different runtimes. Compared to SISRs,
our method consistently performs better across all three problems. When compared to HGS and
PyVRP, our approach shows superior performance on PCVRP and VRPTW instances with 500
and 1000 nodes. For the VRPTW with 100 customers and CVRP scenarios with 500 or more
customers, our method outperforms HGS/PyVRP for shorter runtime intervals. Our approach
is dominated by HGS only in a single setting, namely the CVRP with 100 customers.

The results highlight the effectiveness of our approach in learning powerful destroy strategies

TRISTAN XII Symposium Original abstract submittal



CVRP100 CVRP500 CVRP1000
Method i w25['¢
o Ours \
15.56 —e— Sishs 1
" - HGS n 36.8
Q Q
O 1554 o
36.6
15.52 .k‘k\:f:\—:
20 40 60 50 100 150 200 250 ’ 100 200 300 400 500
Runtime Runtime Runtime
VRPTW100 VRPTW500 VRPTW1000
12.90 3 N RFe
\ Method 505 F \ \
\ LY
12.88 LN Na.
288 50.0 N .
w 9 Ne. )
S 1286 S 495 -— 3 —
149.0 .
o \% ) ———
48.5
50 100 150 200 250 100 200 300 400 500
Runtime Runtime Runtime
PCVRP100 PCVRP500 PCVRP1000
86
‘ Ne. Method 16 .\b T
. —8— Ours ', — - o
TG - e —
9.9 —o— Sisks ] S
” by ®— PyVRP ” b 84
z Z 45 Z
o} ° 3 8
9.8
82
.\'\0\.\‘ RN s
oo - o . ° ) -

20 10 60 50 100 150 200 250 100 200 300 100 500
Runtime Runtime Runtime

Figure 3 — Performance evaluation: costs vs. runtime.

through reinforcement learning. It is worth noting that our method requires a GPU at test time,
which incurs additional computational costs compared to CPU-only solutions. However, these
costs may be offset by reduced development time, particularly for routing problems lacking well-
established approaches. Moving forward, we aim to extend our approach to more complex routing
problems with additional constraints, better aligning with real-world applications. Additionally,
we plan to get a better understanding of the learned destroy strategies to assess whether these
strategies can be efficiently implemented using CPU-only algorithms.
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