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INTRODUCTION 

The concept of Mobility-as-a-Service (MaaS) has gained significant attention in recent years, driven 

by the emergence of new mobility options such as ride-hailing and micromobility services. MaaS 

platforms offer travelers a variety of integrated mobility solutions, bundling different modes of 

transport into cohesive trip options. These bundles enable travelers to select optimal routes across a 

multimodal network based on their individual preferences. Simultaneously, service operators in the 

MaaS system make resource allocation decisions, such as determining pricing strategies and service 

capacities. Achieving equilibrium between these decisions presents a complex challenge. The 

growing adoption of electric vehicles further complicates this by introducing the need to integrate 

vehicle charging behaviors, which often involves matching service operators with energy providers. 

Previous studies (Liu and Chow, 2023; Yao and Zhang, 2024) employ a many-to-many stable 

matching framework to model the joint decision-making of travelers and operators within a MaaS 

system. This framework formulates a bilevel problem: the lower level addresses multimodal flow 

assignments, while the upper level focuses on pricing strategies. Decision variables are applied at 

the link level, with nonlinear functions modeling congestion effects on access links (Liu and Chow, 

2023; Yao and Zhang, 2024) and travel links (Yao and Zhang, 2024). Both studies assess the stability 

of the joint assignment by applying the user equilibrium (UE) condition for active paths between 

origin-destination (OD) pairs, accounting for both travel time and cost. To resolve potential 

instabilities, minimum subsidies are introduced to ensure stable outcomes. If instabilities arise under 

the existing pricing scheme, subsidies are allocated to enforce stability conditions. 

The link-based MaaS assignment models currently available rely on complex algorithms to 

address equilibrium conditions, limiting their scalability to larger networks. Rather than using UE 

conditions to assess stability, Liu et al. (2024) propose a bilevel model that adopts a stochastic 

assignment framework similar to the stochastic user equilibrium (SUE) problem, thereby bypassing 

the need for complementary condition checks. At the flow assignment level, decision variables from 

both travelers and operators form a coalition within a path-level joint utility objective, while the 

upper level focuses on determining operators’ pricing strategies, forming a Stackelberg game. 

Though this model is less computationally demanding, the required path enumeration process 

remains a scalability challenge. 

More scalable approaches are needed to not only facilitate real-world MaaS applications but also 

accommodate the integration of charging decisions required in electric MaaS (eMaaS) systems. In 

an eMaaS system, matching between operators and energy providers is incorporated, alongside 

traveler-operator matching. This adds charging facility-related nodes and links to the multimodal 

network. In this market setting, charging costs are influenced by station capacities and the access 

link costs to charging stations. These costs can either be borne by eMaaS users or offset through 

subsidies. The transfer of costs from the operator-charging side to the traveler-operator side increases 
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the complexity of the model, and no existing framework adequately addresses these three-sided 

decisions in a scalable manner. 

We propose a Perturbed Utility Route Choice (PURC) based framework (Fosgerau et al., 2022) 

to model the three-sided eMaaS system design problem. The PURC approach applies the concept of 

a random utility model (RUM) to link-level properties, assuming additive path utilities. In this 

framework, we assume store-and-forward links with service queues, meaning that link flow remains 

uncongested until capacity is reached. Once capacity is exceeded, excess flows are diverted to other 

uncongested links. This structure simplifies previous link-based models by using stochastic 

assignment while avoiding path enumeration, significantly improving scalability. This framework 

enables the incorporation of the energy provider side in large-scale eMaaS networks. 

METHODOLOGY 

We model the eMaaS system as a Stackelberg game in a bilevel structure using an interval-based 

approach. We divide a typical timeframe (e.g., 24 hours) into multiple intervals, each characterized 

by a unique, known OD demand pattern. Each interval represents a steady-state flow assignment 

problem for the traveler-operator matching process, while the charging operations occur between 

intervals, representing an operator-energy provider matching problem. The two matching problems 

forms the lower-level problem. The upper-level maximizes the operators’ profit based on the lower-

level output. We introduce lower problems separately, then present the overall problem at the end. 

2.1. Traveler-operator matching problem 

The mobility services considered include mass transit (MT) and mobility on demand (MOD) 

services. The multimodal network, denoted by (𝑁𝑀 , 𝐴𝑀), consists of service nodes and links, with 

access and egress links connecting MOD and MT nodes. 𝑀 represents the set of operators. MT links 

are pre-existing and have fixed prices, travel times, and capacities. In contrast, MOD operators 

determine the capacities of their nodes and their link prices, and all nodes owned by the same 

operator are fully connected. The total capacity of all MOD links originating from a given node is 

equal to the capacity of that MOD node. 

To formulate the matching problem, we adopt the Perturbed Utility Route Choice (PURC) model 

(Fosgerau et al., 2022) to formulate an assignment model. For each origin-destination (OD) pair, the 

total utility experienced by each traveler consists of two components: link utility and perturbed 

utility, formulated as: 

min 𝑈(𝒙) = 𝑙⊺(𝒖 ∘ 𝒙) + 𝑙⊺𝐹(𝒙) (1) 

 

The flow conservation constraints require that the sum of flows 𝒙 at each node equals: -1 if it is an 

origin node, 1 if it is a destination node, and 0 otherwise. The perturbed utility term must be a convex 

function, with 𝐹(0) = 𝐹′(0) = 0. In this study, we use 𝐹(𝑥)  =  𝑥2  as suggested in one of the 

alternatives in Fosgerau et al. (2022). 

The lower-level model jointly determines traveler flows and hub capacities. Therefore, we 

formulate the lower-level objective as the weighted sum of traveler utility and hub cost: 

𝑇: min Φ1  =   𝑈(𝒙)  + 𝛼 ∑ 𝑣𝑛𝑧𝑛
𝑛∈𝑁𝑀𝑂𝐷

  (2𝑎) 

The capacity variables 𝑧𝑛 denote the fraction of the maximum allowable capacity 𝑣𝑛 for hub 

MOD nodes. The weight coefficient 𝛼 modulates the impact of hub costs on the overall objective; 

in practice, 𝛼 is chosen to be sufficiently small so that the lower-level problem remains driven by 

the PURC-based flow assignment. For interval 𝑖 , 𝑇𝑖  is a quadratic programming (QP) model, 

solvable on a large scale using off-the-shelf solvers. 

2.2. Operator-energy provider matching problem 
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A charging dedicated network (𝑁𝐶 , 𝐴𝐶)  consists of MOD nodes and charging station nodes, 

assuming that charging activities are only part of MOD operators' decisions. The charging demand 

for each operator corresponds to the capacity solution from the traveler-operator problem in the 

previous interval. The macroscopic charging demand can be captured by dispersion models which 

can be calibrated using real-world charging data. Additionally, rebalancing is incorporated to reflect 

the MOD fleet movement, corresponding to demand shifts in the following interval. This aligns with 

real-world practices where recharging activities are often integrated with rebalancing flows for 

greater efficiency.  

Similar to its counterpart, the operator-energy provider matching problem (𝐺𝑖) between interval 

𝑖 and 𝑖 + 1 is formulated by minimizing the total operator disutility 𝑈𝑠′(𝑥𝑠′𝑟′) for all rebalancing 

pairs 𝑠′ ∈ 𝑆𝑖,𝑖+1
′  and links 𝑟′ ∈ 𝐴𝐶. The total recharge flow must meet the charging demand for each 

MOD operator in each interval. Recharging and rebalancing flows are jointly determined, along with 

capacity decisions at each charging node by the energy providers. The combined recharging and 

rebalancing flow equal to the shift in node capacities for each time propagation. The stand alone 𝐺𝑖 

is also formulated as a QP. 

2.3. Three-sided market Stackelberg game 

We formulate the whole three-sided market as a Stackelberg game: the MOD operator and energy 

provider leads by setting service and charging prices, and travelers and operators follow by selecting 

their most desirable paths within the multimodal network while operators and energy providers 

adjust hub capacities accordingly. Flows and hub capacities are determined within the lower-level 

assignment game, while the upper level sets the prices for these added services. The charging 

demand in 𝐺𝑖 is dependent on the operator capacities determined in 𝑇𝑖, while the rebalancing flow 

for 𝐺𝑖 is jointly determined by the fleet sizes obtained from solving 𝑇𝑖 and 𝑇𝑖+1. Thus, the lower-

level eMaaS problem 𝐿𝑖,𝑖+1
𝑙𝑜𝑤  is solved by jointly addressing 𝑇𝑖, 𝐺𝑖, and 𝑇𝑖+1. The pricing schemes for 

both operators and energy providers are formulated on the upper-level 𝐿𝑖,𝑖+1
𝑢𝑝

 by maximizing the 

system profit. Costs from both operators and energy providers are transferred to travelers via service 

prices, which is captured by the upper-level problem. The eMaaS problem for the entire day, denoted 

as 𝐿𝐼 (where 𝐼 is the set of all intervals), is solved in a cyclic manner, as the operator-energy provider 

matching problem in the last interval is influenced by the start of the following day. 

𝐿𝐼  is formulated as a multi-leader multi-follower game (MLMFG). Due to the complex 

interactions among intervals and price transfers, we propose an iterative algorithm.  For each service 

interval 𝑖, the stand-alone bilevel problem 𝐿𝑖 is first solved without considering the charging related 

cost. By reformulating 𝐿𝑖  into a single-level problem via the Karush–Kuhn–Tucker (KKT) 

conditions of 𝑇𝑖, 𝐿𝑖 can be solved to optimality. Subsequently, the bilevel problem only considering 

charging and rebalancing is solved in a similar manner after obtaining MOD node capacities and 

service prices. The obtained charging cost is then fixed and incorporated into the upper-level cost. 

We iteratively update the service and charging related cost and capacities until the upper-level 

objective of 𝐿𝐼  converges, yielding the final solution for 𝐿𝐼. Between iterations, proper update 

mechanism using the concept of alternating direction method of multipliers (ADMM) (Xi et al. 

2024) is developed to ensure convergence. 

NUMERICAL EXAMPLE 

We use a toy network to illustrate the model framework. Fig. 1 shows the service-specific network. 

The solid lines connecting nodes 1, 2, and 3 represent existing transit links, while the dotted black 

lines indicate links outside the MaaS system. The network expands with the introduction of MOD 

services by adding MOD-specific nodes and corresponding access and egress links. Two intervals 

are studied. In interval 1, the OD demand is 500 from node 0 to node 3 and 300 from node 3 to node 

0, with maximum MOD capacities of 500, 300, and 200 at nodes 0’, 2’, and 3’, respectively. In 

interval 2, demand changes to 200 from node 0 to 3, and 600 from node 3 to 0. The traveler value of 

time (VOT) is $20/hour.  
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Fig 2 illustrates the recharging network. There are two charging nodes available, with only MOD 

fleets requiring recharging. The time cost is considered for both charging and rebalancing intervals. 

The MOD operator's VOT is also $20/hour. For simplicity, we assume 30% of the MOD fleet from 

interval 1 requires recharging. A full reset of the state of charge (SOC) occurs by the end of interval 

2 (e.g., centralized overnight slow-charging), isolating the intervals from each other. We solve the 

three-interval system using a single-level structure in Gurobi 11.0.3. Fig 1(a) and 1(b) show the 

results of the two service intervals, while Fig 2 illustrates the rebalancing and recharge flows 

between intervals at the path level. 

The charging and rebalancing flows in Fig 2 result from the capacity decisions made in intervals 

1 and 2. Since the total capacity required in interval 2 exceeds that in interval 1, additional resources 

are needed, leading to the creation of a dummy node (3*) as shown in Fig 2 

We also applied the bilevel problem of a single service interval to Sioux-Falls network with 29 

OD pairs. The reformulated single-level problem is solved to optimality under 10 minutes. In 

contrast, previous studies at a similar scale requires hours to solve (Liu and Chow, 2024; Yao and 

Zhang, 2024). The reduced computational complexity shows its potential in larger scale applications. 

COMPUTATIONAL EXPERIMENTS 

A comprehensive experiment will be presented, including: 

• A test network based on a multimodal and charging network in part of New York City. 

• A multi-interval system that considers the cyclic nature of demand patterns. 

• Incorporating heterogeneous travelers, classified by OD pairs and population groups. 

• Splitting charging facilities into different types to reflect heterogeneous charging decisions. 

The proposed framework can significantly scale the evaluation of MaaS systems, especially with 

the addition of charging activities. This will provide valuable insights for policymakers and platform 

designers, enhancing the understanding of real-world eMaaS applications. 

 

 

 
Figure 1. Service network and results of (a) service interval 1 and (b) service interval 2; elements 

included in the brackets are (flow, price, time). 

 

 
Figure 2. Recharge network and flow for recharging and rebalancing 
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