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1 INTRODUCTION AND CONTRIBUTIONS

Flight schedules have a significant effect on airline profitability and competitiveness. A large
number of airlines are classified as regional airlines. They are responsible for operating between
30% and 40% of the flights in the US domestic market. For example, in 2022, four of the 10 largest
US airlines in terms of flight operations were regional airlines. They typically offer short-haul
flights using smaller aircraft, leverage hub-and-spoke networks, and help passengers connect
with flights operated by their mainline partner carriers. We jointly optimize frequency planning,
timetable development, and fleet assignment, as well as some limited aspects of route planning,
for a regional airline network, assuming that the mainline partner’s schedule is fixed.

Our first contribution is a new integrated optimization formulation for medium-term planning
decisions that incorporates a realistic passenger demand model. Unlike previous studies (Wei et al.,
2020, Yan et al., 2022), which used flight-level decision variables, we use a single composite variable
to model all non-stop flights between a pair of airports and their complex interdependencies.
In contrast, the existing airline scheduling literature uses composite variables to model the
itineraries of individual aircraft, crew, and passengers primarily for short-term planning. Second,
the composite variables provide an extended formulation enjoying an extremely tight continuous
relaxation. We exploit this tightness to obtain near-optimal solutions via column generation (CG)
and a restricted master heuristic. We also propose a new acceleration approach based on Dynamic
Programming (DP) to quickly generate promising columns. When combined with implicit dual
smoothing, symmetry breaking, and subproblem aging, this acceleration approach allows us
to solve large-scale real-world instances in 3 hours. Finally, through extensive computational
analyses based on ablation studies, we demonstrate the effectiveness of our overall modeling and
computational framework. We identify the main operational drivers of the profit improvements
enabled by our approach. Furthermore, numerous sensitivity analyses confirm that our results
are robust to relaxing key modeling assumptions. Ultimately, the proposed approach provides
high-quality solutions to real-world instances within practically reasonable runtimes.

Recent studies develop timetabling and fleet assignment models that take into account the
implications of choice-based demand. They either simplify the choice model or rely on heuristic
solution approaches. In contrast, our approach finds provably near-optimal solutions, and it
can also incorporate frequency planning and some limited aspects of route selection. Existing
scheduling studies that use CG do so to generate either aircraft routes or passenger itineraries.
In contrast, our approach uses CG to generate segment schedules, which is a new application of
CG in airline scheduling. Finally, we develop and solve a new passenger mix model using DP to
significantly speed up the pricing subproblem.

2 METHODOLOGY

2.1 Single-Segment Scheduling

We start by formulating the single-segment scheduling problem under a General Attraction Model
(GAM) passenger allocation (Gallego et al., 2015). The binary variable z indicates whether the
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schedule includes a flight departing in a specific period and operated by a specific aircraft type.
The variables & and xg are the number of passengers in a specific market who take, respectively,
a flight at a specific time, or the outside option (OO). The objective function (la) maximizes
the profit. Constraint (1b) ensures that the segment schedule does not use more aircraft than
available in any time window whose size equals the round-trip segment travel time of that aircraft
type. (1lc) defines the demand for each flight as proportional to its attractiveness. (1d) ensures
that the sum of the number of passengers taking the various alternatives equals the total passenger
demand in the market. (le) ensures that the offered seats are enough to carry all passengers
taking the flight. AC denotes aircraft, ACT aircraft types, SS segment schedules, and PAX stands
for passengers.

max Z Z Z (Fare x PAX — Cost x Number of Flights) (1a)

T,z
’ Aircraft-Types Time-Periods Markets

s.t.  Flights in Round-Trip Window < Available Aircraft vV ACT, Periods (1b)
Itinerary Attractiveness

PAX Carried < - x 00 Pax V Periods, Markets (1c)
OO Attractiveness
00 PAX + Z PAX Carried = Demand vV Markets (1d)
Periods
PAX < Available Seats V Periods (le)
z binary, x,xg > 0 vV ACT, Markets, Periods (1f)

2.2 Network-Wide Scheduling

The network-wide schedule optimization problem combines individual single-segment problems
and links them through fleet size and aircraft balance constraints. Binary decision variables y
indicate whether the regional airline operates a specific segment schedule on a specific segment.
Decision variables w represent the number of aircraft of a specific type available at a specific
airport at the beginning of the planning period. The objective function (2a) maximizes the total
profit from the set of chosen segment schedules. Constraints (2b) ensure that exactly one segment
schedule is selected for each segment operated by the regional airline. (2c) ensures that no more
aircraft of each type are used than are available. (2d) links the variables y and w that impose
the conservation of flow at each airport in each period and for each type of aircraft. (2e) ensures
that the aircraft are correctly positioned at the end of the planning horizon to ensure that the
same schedule can be repeated after the end of the planning horizon. We note that for a given
segment, the number of y variables is exponential in the number of periods and also exponential
in the number of aircraft types. Furthermore, in the worst case, the number of feasible solutions
of (2a)—(2f) is exponential in the number of segments.

Schedule Profit 2
max Z chedule Pro (2a)

Segment Schedules

s.t. Number of Chosen Schedules =1 V Segments (2b)
AC at Horizon Start < Available AC VACT (2¢
Remaining AC = Starting — Departing + Arriving V Airports, ACT, Periods (2d

AC at Horizon Start = AC at Horizon End Y Airports, ACT (2e
y Binary, w Non-Negative Integers vV SS, ACT, Airports, Periods (2f

)
)
)
)

TRISTAN XII Symposium Original abstract submittal



Table 1 — Ablation study results. All gaps are calculated w.r.t. the true dual bound.

Base (All Activated) No Barrier No Shortcut No Noise No DP
Instance Gap % Time (s) Gap % Time (s) Gap % Time (s) Gap % Time (s) Gap % Time (s)
Mesa Airlines (YV) 0.11 52.80 0.09  4602.45 0.11 277.76 0.10  1042.75 0.10 703.75
Republic Airways (YX) 0.20 884.05 0.20  1506.19 0.20  1696.42 0.20  2541.12 0.20  1883.55
Skywest Airlines (OO) 0.00 10800.00 0.00  10800.00 0.01  10800.00 — 10800.00 0.00  10800.00
YV + YX 0.17 1115.75 0.14  1742.86 0.19  1666.04 0.14  8481.55 0.13  6051.81
YV + 00 0.08 10800.00 — 10800.00 0.11  10800.00 — 10800.00 — 10800.00
YX + 00 0.12 10800.00 — 10800.00 — 10800.00 — 10800.00 — 10800.00
YV + YX + 00 0.09 10800.00 — 10800.00 — 10800.00 — 10800.00 — 10800.00

2.3 Column Generation Algorithm

The schedule for any given segment that appears in an optimal network-wide solution is not
necessarily optimal for the single-segment problem and vice versa. Therefore, one cannot directly
use the single-segment model to build the set of segments required to solve the network-level
model. Enumerating all feasible schedules would be prohibitively expensive, due to the size of the
set. Moreover, most feasible schedules are not attractive from a commercial point of view. These
observations suggest that an appropriate solution method for the network-wide problem should
use the single-segment model to identify promising schedules. At the same time, information from
the network-wide model should be used at the single-segment level to ensure that the resulting
schedules work well when used jointly. To achieve the above objective, we propose a column
generation algorithm that uses dual information from the continuous relaxation of (2a)—(2f) to
generate promising schedules using a variation of the single-segment model (1a)—(1f). Formulation
(2a)—(2f) is challenging to solve due to the exponentially many variables y for each segment.
However, this formulation enjoys an especially tight continuous relaxation. Furthermore, we
develop an exact column generation procedure and a novel acceleration technique, that efficiently
solve the continuous relaxation. Ultimately, a tight continuous relaxation and an efficient column
generation procedure together yield high-quality solutions within short runtime budgets (of at
most three hours) for planning problems at the scale of real-world airline networks.

2.4 Heuristic Column Generation

In principle, there is no need to solve the pricing subproblem to optimality, and any feasible
solution with positive reduced cost, when added to the column pool, can improve the restricted
master problem (RMP) objective. However, we prove that, if we used a suboptimal solution of
the pricing subproblem to build a segment schedule as a new column in the RMP, its objective
coefficient would be wrong, because it would be calculated using passenger figures that do not
follow the GAM. To compute the objective coefficient for the network-wide scheduling model with
GAM-consistent passenger allocation for a possibly suboptimal solution, one can fix the value
of the z variables and re-solve the pricing subproblem to optimality (we call such a procedure
“z-fixing”). Indeed, such a transition from a feasible solution that does not follow the GAM to
one that does, by definition, cannot decrease the reduced cost.

We develop a novel approach to derive an upper bound on the reduced cost of a column by
solving a relaxation of the pricing subproblem. This procedure can result in two cases. On the
one hand, if the upper bound is negative, then no positive-reduced-cost columns exist. On the
other hand, while producing the bound, the procedure usually builds a segment schedule that can
be added to the column pool of the RMP. We solve this relaxed version of the pricing subproblem
using DP. We find that DP usually produces high-quality columns and helps to improve the
overall convergence of the algorithm.
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Table 2 — Results overview when optimizing the networks of Mesa (YV), Republic (YX), or both.

YV YX YV+YX
Revenue Cost Profit Revenue Cost Profit Revenue Cost Profit
Status Quo 1,664,272 696,246 968,026 1,723,135 839,696 883,439 3,387,407 1,535,941 1,851,465

1,698,251 696,348 1,001,903 1,762,283 842,073 920,211 3,471,732 1,538,942 1,932,790

Freq +0 (12.04%) (+0.01%)  (+3.50%)  (+2.27%)  (10.28%) (+4.16%)  (+2.49%) (10.20%)  (+4.39%)
Freq 41 1805247 742,565 1,062,682 1,869,700 924730 944970 3713894  1,670419 2043474
q (18.47%) (16.65%) (+9.78%) (+8.51%) (+10.13%) (+6.96%) (+9.64%) (+8.76%) (110.37%)
1,841,328 751,723 1,089,605 1,933,830 936473 997,357 3,790,470 1,692,362 2,098,108

Freq £2

(+10.64%)  (+7.97%) (+12.56%) (+12.23%) (+11.53%) (+12.89%) (+11.90%) (+10.18%) (+13.32%)

3 RESULTS AND DISCUSSION

Table 1 quantifies the impact of the main algorithm improvements: 1) Barrier: Using the barrier
algorithm when solving the relaxed RMP to increase the likelihood that the optimal dual solution
lies midface. 2) Shortcut: Cutting short some column generation iterations when the likelihood
of producing new positive reduced cost solutions is low. 3) Noise: Adding a tiny amount of noise
to the fares to break the symmetry in the subproblem. 4) DP: Using the DP algorithm and
solving MIP (1a)—(1f) only if the DP does not produce any positive-reduced-cost column. In the
“Base” configuration, all algorithm improvements are active. In the other four configurations, we
disable each improvement to evaluate how much the performance of the corresponding algorithm
differs compared to the Base configuration. We used Gurobi 9.0.0 as the black-box linear and
mixed-integer optimization solver, and a time limit of 3 hours. Table 1 shows that each algorithmic
improvement typically leads to a 2X-10X acceleration. In fact, the last two instances are not
solvable until all four improvements are used, showing the effectiveness of our algorithm design.
Table 2 presents the effects of our modeling and algorithmic approach on the key financial
metrics. First, to evaluate the “Status Quo” schedule, we fix all flights to their real-world
departure times and operating aircraft. In this case, the algorithm reduces to applying the
passenger allocation model by solving the subproblem (1a)—(1f) for all segments. The other three
configurations are named “Freq 4+ t” and allow the flight frequency to vary by at most ¢ flights on
each segment. In particular, “Freq 4+ 0” only allows flight retiming and fleet reassignment, but not
frequency change. When ¢ € {1, 2}, we still impose a minimum frequency of one flight per day to
ensure that no destination is completely excluded. Table 2 provides several insights. First, the
costs and revenues computed by our approach are both higher than those under the Status Quo
in all cases. Furthermore, in each case, a profit higher than the Status Quo is obtained because
the absolute revenue growth is greater than the absolute cost increase. As expected, in the
Freq £0 case, with the frequencies not allowed to change in any of the segments, the entire cost
growth is driven only by the reassignment of aircraft corresponding to different operating costs.
Consequently, the corresponding cost changes are small (in the 0.01%-0.28% range). On the other
hand, revenue increases by 2.04%-2.49% leading to a profit increase of 3.50%-4.39%. These results
demonstrate the potential for hundreds of thousands of dollars in daily profit improvements.
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